1887

Abstract

In , the last step of the synthesis of adenosylcobamide is catalysed by the cobalamin synthase enzyme encoded by the gene of this bacterium. Overexpression of the gene in elicited the accumulation of the phage shock protein PspA, a protein whose expression has been linked to membrane stress. Resolution of inner and outer membranes of by isopycnic density ultracentrifugation showed CobS activity associated with the inner membrane, a result that was confirmed using antibodies against CobS. Computer analysis of the predicted amino acid sequence of CobS suggested it was an integral membrane protein. Results of experiments performed with strains carrying plasmids encoding CobS–alkaline phosphatase or CobS–-galactosidase protein fusions were consistent with the membrane localization of the CobS protein. Modifications to the predicted model were made based on data obtained from experiments using protein fusions. The function encoded by the orthologue in the methanogenic archaeon strain ΔH compensated for the lack of CobS during cobalamin synthesis in strains of . Cobalamin synthase activity was also detected in a membrane preparation of . It was concluded that the assembly of the nucleotide loop of adenosylcobamides in archaea and bacteria is a membrane-associated process. Possible reasons for the association of adenosylcobamide biosynthetic enzymes with the cell membrane are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26952-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501385.html?itemId=/content/journal/micro/10.1099/mic.0.26952-0&mimeType=html&fmt=ahah

References

  1. Babior B. M. 1982; Ethanolamine ammonia-lyase. In B12 pp. 263–288Edited by Dolphin D. New York: Wiley;
    [Google Scholar]
  2. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  3. Berkowitz D., Hushon J. M., Whitfield H. J., Roth J., Ames B. N. 1968; Procedure for identifying nonsense mutations. J Bacteriol 96:215–220
    [Google Scholar]
  4. Brickman E., Beckwith J. 1975; Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol 96:307–316 [CrossRef]
    [Google Scholar]
  5. Brissette J. L., Russel M., Weiner L., Model P. 1990; Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A 87:862–866 [CrossRef]
    [Google Scholar]
  6. Brushaber K. R., O'Toole G. A., Escalante-Semerena J. C. 1998; CobD, a novel enzyme with l-threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-propanol O-2-phosphate, a proposed new intermediate in cobalamin biosynthesis inSalmonella typhimurium LT2. J Biol Chem 273:2684–2691 [CrossRef]
    [Google Scholar]
  7. Cameron B., Blanche F., Rouyez M.-C.7 other authors 1991; Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans genes encoding nicotinate-nucleotide : dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5′-phosphate) synthase. J Bacteriol 173:6066–6073
    [Google Scholar]
  8. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. 1983; Beta-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol 100:293–308
    [Google Scholar]
  9. Davis R. W., Botstein D., Roth J. R. 1980 A Manual for Genetic Engineering: Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  10. DeVeaux L. C., Clevenson D. S., Bradbeer C., Kadner R. J. 1986; Identification of the BtuCED polypeptides and evidence for their role in vitamin B12 transport inEscherichia coli. J Bacteriol 167:920–927
    [Google Scholar]
  11. Escalante-Semerena J. C., Roth J. R. 1987; Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol 169:2251–2258
    [Google Scholar]
  12. Escalante-Semerena J. C., Suh S.-J., Roth J. R. 1990; cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids inSalmonella typhimurium. J Bacteriol 172:273–280
    [Google Scholar]
  13. Escalante-Semerena J. C., Johnson M. G., Roth J. R. 1992; The CobII and CobIII regions of the cobalamin (vitamin B12) biosynthetic operon ofSalmonella typhimurium. J Bacteriol 174:24–29
    [Google Scholar]
  14. Fischer R., Gärtner P., Yeliseev A., Thauer R. K. 1992; N5-Methyltetrahydromethanopterin : coenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch Microbiol 158:208–217 [CrossRef]
    [Google Scholar]
  15. Fraser M. E., James M. N., Bridger W. A., Wolodko J. W. 1999; A detailed structural description of Escherichia coli succinyl-CoA synthetase. J Mol Biol 288:501 [CrossRef]
    [Google Scholar]
  16. Gärtner P., Ecker A., Fischer R., Linder D., Fuchs G., Thauer R. K. 1993; Purification and properties of N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Eur J Biochem 213:537–545 [CrossRef]
    [Google Scholar]
  17. Heiden S., Hedderich R., Setzke E., Thauer R. K. 1994; Purification of a two-subunit cytochrome-b-containing heterodisulfide reductase from methanol-grown Methanosarcina barkeri. Eur J Biochem 221:855–861 [CrossRef]
    [Google Scholar]
  18. Heller K., Kadner R. J. 1985; Nucleotide sequence of the gene for the vitamin B12 receptor protein in the outer membrane ofEscherichia coli. J Bacteriol 161:904–908
    [Google Scholar]
  19. Hoffman C. S., Wright A. 1985; Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc Natl Acad Sci U S A 82:5107–5111 [CrossRef]
    [Google Scholar]
  20. Hofmann K., Stoffel W. 1993; TMbase – a database of membrane spanning protein segments. Biol Chem 374:166
    [Google Scholar]
  21. Jensen D. B. 1998 Studies to determine the intracellular levels of sigma factors and their corresponding holoenzymes in E. coli PhD thesis Department of Bacteriology, University of Wisconsin-Madison;
    [Google Scholar]
  22. Jeter R. M., Olivera B. M., Roth J. R. 1984; Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol 159:206–213
    [Google Scholar]
  23. Keck B., Renz P. 2000; Salmonella typhimurium forms adenylcobamide and 2-methyladenylcobamide, but no detectable cobalamin during strictly anaerobic growth. Arch Microbiol 173:76–77 [CrossRef]
    [Google Scholar]
  24. Keck B., Munder M., Renz P. 1998; Biosynthesis of cobalamin in Salmonella typhimurium: transformation of riboflavin into the 5,6-dimethylbenzimidazole moiety. Arch Microbiol 171:66–68 [CrossRef]
    [Google Scholar]
  25. Kleerebezem M., Crielaard W., Tommassen J. 1996; Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 15:162–171
    [Google Scholar]
  26. Kunitz M. J. 1952; Crystalline inorganic pyrophosphatase isolated from baker's yeast. J Gen Physiol 35:423–450 [CrossRef]
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage and structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  28. Maggio-Hall L. A., Escalante-Semerena J. C. 1999; In vitro synthesis of the nucleotide loop of adenosylcobalamin by Salmonella typhimurium enzymes. Proc Natl Acad Sci U S A 96:11798–11803 [CrossRef]
    [Google Scholar]
  29. Manoil C., Beckwith J. 1985; TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A 82:8129–8133 [CrossRef]
    [Google Scholar]
  30. Markwell J. P., Lascelles J. 1978; Membrane-bound, pyridine nucleotide-independent l-lactate dehydrogenase of Rhodopseudomonas sphaeroides. J Bacteriol 133:593–600
    [Google Scholar]
  31. Model P., Jovanovic G., Dworkin J. 1997; The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 24:255–261 [CrossRef]
    [Google Scholar]
  32. Osborn M. J., Munson R. 1974; Separation of the inner (cytoplasmic) and outer membranes of Gram-negative bacteria. Methods Enzymol 31:642–653
    [Google Scholar]
  33. O'Toole G. A., Escalante-Semerena J. C. 1995; Purification and characterization of the bifunctional CobU enzyme of Salmonella typhimurium LT2. Evidence for a CobU∼GMP intermediate. J Biol Chem 270:23560–23569 [CrossRef]
    [Google Scholar]
  34. O'Toole G. A., Rondon M. R., Escalante-Semerena J. C. 1993; Analysis of mutants of Salmonella typhimurium defective in the synthesis of the nucleotide loop of cobalamin. J Bacteriol 175:3317–3326
    [Google Scholar]
  35. Pezacka E., Walerych W. 1981; Biosynthesis of vitamin B-12. Part I. Role of the ribosomal proteins in vitamin B-12 biosynthesis. Biochim Biophys Acta 678:300–310 [CrossRef]
    [Google Scholar]
  36. Posnett D. N., McGrath H., Tam J. P. 1988; A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain. J Biol Chem 263:1719–1725
    [Google Scholar]
  37. Rondon M. R., Escalante-Semerena J. C. 1992; The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes ofSalmonella typhimurium. J Bacteriol 174:2267–2272
    [Google Scholar]
  38. Rondon M. R., Escalante-Semerena J. C. 1997; Integration host factor (IHF) is required for 1,2-propanediol-dependent transcription of the cob/pdu regulon in Salmonella typhimurium LT2. J Bacteriol 179:3797–3800
    [Google Scholar]
  39. Roth J. R., Lawrence J. G., Rubenfield M., Kieffer-Higgins S., Church G. M. 1993; Characterization of the cobalamin (vitamin B12) biosynthetic genes ofSalmonella typhimurium. J Bacteriol 175:3303–3316
    [Google Scholar]
  40. Sasse J.others 1991; Detection of proteins. In Current Protocols in Molecular Biology pp 10.16.11–10.16.18Edited by Ausubel F. A. New York: Wiley;
    [Google Scholar]
  41. Spedding G. 1990; Isolation and analysis of ribosomes from prokaryotes, eukaryotes, and organelles. In Ribosomes and Protein Synthesis pp. 4–7Edited by Spedding G. New York: Oxford University Press;
    [Google Scholar]
  42. Stupperich E., Steiner I., Eisinger H. J. 1987; Substitution of Coa-(5-hydroxybenzimidazolyl)cobamide (factor III) by vitamin B12 inMethanobacterium thermoautotrophicum. J Bacteriol 169:3076–3081
    [Google Scholar]
  43. Suh S.-J. 1994 The role of CobA in adenosylation of corrinoids in Salmonella typhimurium PhD thesis, University of Wisconsin-Madison;
  44. Tabor S.others 1990; Expression using the T7 RNA polymerase/promoter system. In Current Protocols in Molecular Biology pp 16.12.11–16.12.11Edited by Ausubel F. M. New York: Wiley;
    [Google Scholar]
  45. Tai S. P., Kaplan S. 1985; Intracellular localization of phospholipid transfer activity in Rhodopseudomonas sphaeroides and a possible role in membrane biogenesis. J Bacteriol 164:181–186
    [Google Scholar]
  46. Taylor R. T., Weissbach H. 1973; N5-Methylenetetrahydrofolate-homocysteine methyltransferases. In The Enzymes pp. 121–165Edited by Boyer P. D. New York: Academic Press;
    [Google Scholar]
  47. Thomas M. G., Escalante-Semerena J. C. 2000; Identification of an alternative nucleoside triphosphate : 5′-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum ΔH. J Bacteriol 182:4227–4233 [CrossRef]
    [Google Scholar]
  48. Toraya T., Fukui S. 1982; Diol dehydrase. In B12 pp. 233–262Edited by Dolphin D. New York: Wiley;
    [Google Scholar]
  49. Trzebiatowski J. R., Escalante-Semerena J. C. 1997; Purification and characterization of CobT, the nicotinate mononucleotide : 5,6-dimethylbenzimidazole phosphoribosyltransferase enzyme from Salmonella typhimurium LT2. J Biol Chem 272:17662–17667 [CrossRef]
    [Google Scholar]
  50. Van Bibber M., Bradbeer C., Clark N., Roth J. R. 1999; A new class of cobalamin transport mutants (btuF) provides genetic evidence for a periplasmic binding protein inSalmonella typhimurium. J Bacteriol 181:5539–5541
    [Google Scholar]
  51. Walerych W., Kato T., Pawelkiewicz J. 1968; Enzymic synthesis of vitamin B12. Biochem Biophys Res Commun 31:328–332 [CrossRef]
    [Google Scholar]
  52. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. 1984; New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369–379 [CrossRef]
    [Google Scholar]
  53. Weiner L., Brissette J. L., Model P. 1991; Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. Genes Dev 5:1912–1923 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26952-0
Loading
/content/journal/micro/10.1099/mic.0.26952-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error