1887

Abstract

The regulation of the expression of the operon, proposed to encode an electron transfer chain from the outer to the inner membrane in the obligate acidophilic chemolithoautroph , has been studied at the RNA and protein levels. As observed by Northern hybridization, real-time PCR and reverse transcription analyses, this operon was more highly expressed in ferrous iron- than in sulfur-grown cells. Furthermore, it was shown by immunodetection that components of this respiratory chain are synthesized in ferrous iron- rather than in sulfur-growth conditions. Nonetheless, weak transcription and translation products of the operon were detected in sulfur-grown cells at the early exponential phase. The results strongly support the notion that -operon expression is induced by ferrous iron, in agreement with the involvement of the -operon-encoded products in the oxidation of ferrous iron, and that ferrous iron is used in preference to sulfur.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26966-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502113.html?itemId=/content/journal/micro/10.1099/mic.0.26966-0&mimeType=html&fmt=ahah

References

  1. Amaro A. M., Chamorro D., Seeger M., Arredondo R., Peirano I., Jerez C. A. 1991; Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol 173:910–915
    [Google Scholar]
  2. Appia-Ayme C., Guiliani N., Ratouchniak J., Bonnefoy V. 1999; Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferroxidans ATCC 33020. Appl Environ Microbiol 65:4781–4787
    [Google Scholar]
  3. Arslan E., Schulz H., Zufferey R., Kûnzlér P., Thöny-Meyer L. 1998; Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem Biophys Res Comm 251:744–747 [CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Greene Publishing;
  5. Ball C. A., Osuna R., Ferguson K. C., Johnson R. C. 1992; Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174:8043–8056
    [Google Scholar]
  6. Bengrine A., Guiliani N., Appia C., Borne F., Chippaux M., Bonnefoy V. 1995; Studies of the rusticyanin encoding gene of Thiobacillus ferrooxidans ATCC 33020. In Biohydrometallurgical Processing vol 2 pp. 75–83Edited by Jerez C. A., Vargas T., Toledo H., Wiertz J. City: University of Chile;
    [Google Scholar]
  7. Bengrine A., Guiliani N., Chippaux M., Bonnefoy V. 1997; Expression of rusticyanin gene from Thiobacillus ferrooxidans strain ATCC 33020 in Escherichia coli and Thiobacillus ferrooxidans. pp 3·1–3·2 In IBS-Biomine City: Australian Mineral Foundation;
    [Google Scholar]
  8. Bengrine A., Guiliani N., Appia-Ayme C., Jedlicki E., Holmes D. S., Chippaux M., Bonnefoy V. 1998; Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC 33020 strain. Biochim Biophys Acta 144399–112 [CrossRef]
    [Google Scholar]
  9. Cobley J. G., Haddock B. A. 1975; The respiratory chain of Thiobacillus ferrooxidans: the reduction of cytochromes by Fe2+ and the preliminary characterization of rusticyanin a novel “blue” copper protein. FEBS Lett 60:29–33 [CrossRef]
    [Google Scholar]
  10. Cox J. C., Boxer D. H. 1978; The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans. Biochem J 174:497–502
    [Google Scholar]
  11. Cox J. C., Boxer D. H. 1986; The role of rusticyanin, a blue copper protein, in the electron transport chain of Thiobacillus ferrooxidans grown on iron or thiosulfate. Biotechnol Appl Biochem 8:269–275
    [Google Scholar]
  12. Das A., Mishra A. K., Roy P. 1992; Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:
    [Google Scholar]
  13. Drobner E., Huber H., Stetter K. O. 1990; Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol 56:2922–2923
    [Google Scholar]
  14. Espejo R. T., Romero P. 1987; Growth of Thiobacillus ferrooxidans on elemental sulfur. Appl Environ Microbiol 53:1907–1912
    [Google Scholar]
  15. Espejo R. T., Escobar B., Jedlicki E., Uribe P., Badilla-Ohlbaum R. 1988; Oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans. Appl Environ Microbiol 54:1694–1699
    [Google Scholar]
  16. Fritsch J., Rothfuchs R., Rauhut R., Klug G. 1995; Identification of an mRNA element promoting rate-limiting cleavage of the polycistronic puf mRNA in Rhodobacter capsulatus by an enzyme similar to RNase E. Mol Microbiol 15:1017–1029 [CrossRef]
    [Google Scholar]
  17. Giudici-Orticoni M.-T., Guerlesquin F., Bruschi M., Nitschke W. 1999; Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c4. J Biol Chem 274:30365–30369 [CrossRef]
    [Google Scholar]
  18. Green J., Anjum M. F., Guest J. R. 1996; The ndh-binding protein (Nbp) regulates the ndh gene of Escherichia coli in response to growth phase and is identical to Fis. Mol Microbiol 20:1043–1055 [CrossRef]
    [Google Scholar]
  19. Guiliani N., Bengrine A., Borne F., Chippaux M., Bonnefoy V. 1997; Alanyl tRNA synthetase gene of extreme acidophilic chemolithotrophic Thiobacillus ferrooxidans is highly homologous to alaS from all living kingdoms but cannot be transcribed from its promoter in Escherichia coli. Microbiology 143:2179–2187 [CrossRef]
    [Google Scholar]
  20. Hazeu W., Bijleveld W., Grotenhuis J. T. C., Kakes E., Kuenen J. G. 1986; Kinetics and energetics of reduced sulphur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Antonie van Leeuwenhoek 52:507–518 [CrossRef]
    [Google Scholar]
  21. Jedlicki E., Reyes R., Jordana X., Mercereau-Puijalon O., Allende J. E. 1986; Rusticyanin: initial studies on the regulation of its synthesis and gene isolation. Biotechnol Appl Biochem 8:342–350
    [Google Scholar]
  22. Kulpa F. Jr, Mjoli N., Roskey M. T. 1986a; Comparison of iron and sulfur oxidation in Thiobacillus ferrooxidans: inhibition of iron oxidation by growth on sulfur. Biotechnol Bioeng Symp 16:289–295
    [Google Scholar]
  23. Kulpa C. F., Roskey M. T., Mjoli N. 1986b; Construction of genomic libraries and induction of iron oxidation in Thiobacillus ferrooxidans. Biotechnol Appl Biochem 8:330–341
    [Google Scholar]
  24. Landesman J., Duncan D. W., Walden C. C. 1966; Oxidation of inorganic sulfur compounds by washed cell suspension of Thiobacillus ferrooxidans. Can J Microbiol 12:957–964 [CrossRef]
    [Google Scholar]
  25. Leduc L. G., Ferroni G. D. 1994; The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Lett 108:103–120
    [Google Scholar]
  26. Lee C., Levin A., Branton D. 1987; Copper staining: a five minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 166:308–312 [CrossRef]
    [Google Scholar]
  27. Levicán G., Bruscella P., Guacucano M., Inostroza C., Bonnefoy V., Holmes D. S., Jedlicki E. 2002; Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J Bacteriol 184:1498–1501 [CrossRef]
    [Google Scholar]
  28. Mansch R., Sand W. 1992; Acid-stable cytochromes in ferrous ion oxidizing cell-free preparations from Thiobacillus ferrooxidans. FEMS Microbiol Lett 92:83–88 [CrossRef]
    [Google Scholar]
  29. Margalith P., Silver M., Lundgren G. 1966; Sulfur oxidation by the iron bacterium Ferrobacillus ferrooxidans. J Bacteriol 92:1706–1709
    [Google Scholar]
  30. Muir M. K., Anderson T. 1977; Determination of ferrous iron in copper-process metallurgical solutions by the o-phenanthroline colorimetric method. Metallurg Trans 8B:517
    [Google Scholar]
  31. Nilsson L., Vanet A., Vijgenboom E., Bosch L. 1990; The role of FIS in trans activation of stable RNA operons in E. coli. EMBO J 9:727–734
    [Google Scholar]
  32. Nilsson L., Verbeek H., Vijgenboom E., van Drunen C., Vanet A., Bosch L. 1992; FIS-dependent trans-activation of stable RNA operons of Escherichia coli under various growth conditions. J Bacteriol 174:921–929
    [Google Scholar]
  33. Ohmura N., Sasaki K., Matsumoto N., Saiki H. 2002; Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087 [CrossRef]
    [Google Scholar]
  34. Osorio G., Varela P., Arrendondo R., Seeger M., Amaro A. M., Jerez C. A. 1993; Changes in global gene expression of Thiobacillus ferrooxidans when grown on elementary sulfur. In Biohydrometallurgical technologies vol 2 pp. 565–575Edited by Torma A. E., Apel M. L., Brierley C. L. Warrendale, PA: The Minerals, Metals and Material Society (TMS;
    [Google Scholar]
  35. Pronk J. T., Meijer W. M., Hazeu W., Van Dijken J. P., Bos P., Kuenen J. G. 1991; Growth of Thiobacillus ferrooxidans on formic acid. Appl Environ Microbiol 5:2057–2062
    [Google Scholar]
  36. Pronk J. T., De Bruyn J. C., Bos P., Kuenen J. G. 1992; Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230
    [Google Scholar]
  37. Pulgar V., Nunez L., Moreno F., Orellana O., Jedlicki E. 1993; Expression of rusticyanin gene is regulated by growth condition in Thiobacillus ferrooxidans. In Biohydrometallurgical technologies vol 2 pp. 541–548Edited by Torma A. E., Apel M. L., Brierley C. L. Warrendale, PA: The Minerals, Metals and Material Society (TMS;
    [Google Scholar]
  38. Rohwerder T., Gehrke T., Kinzler K., Sand W. 2003; Bioleaching review part A: progress in bioleaching: fundamentals and mechanism of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248 [CrossRef]
    [Google Scholar]
  39. Sugio T., Domatsu C., Munakata O., Tano T., Imai K. 1985; Role of ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol 49:1401–1406
    [Google Scholar]
  40. Sugio T., Mizunashi W., Tano T., Imai K. 1986; Production of ferrous iron as intermediates during aerobic sulfur oxidation in Thiobacillus ferrooxidans. Agric Biol Chem 50:2755–2761 [CrossRef]
    [Google Scholar]
  41. Sugio T., Wada K., Mori M., Inagaki K., Tano T. 1988; Synthesis of an iron-oxidizing system during growth of Thiobacillus ferrooxidans on sulfur-basal salts medium. Appl Environ Microbiol 54:150–152
    [Google Scholar]
  42. Suzuki I., Takeuchi T. L., Yuthasastrakosol T. D., Oh J. K. 1990; Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by growth on ferrous iron, sulfur, or a sulfide ore. Appl Environ Microbiol 56:1620–1626
    [Google Scholar]
  43. Wackwitz B., Bongaerts J., Goodman S. D., Unden G. 1999; Growth phase-dependent regulation of nuoA–N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet 262:876–883 [CrossRef]
    [Google Scholar]
  44. Yarzábal A., Duquesne K., Bonnefoy V. 2001; Expression of the rus gene encoding rusticyanin in Acidithiobacillus ferrooxidans ATCC 33020 strain. In Biohydrometallurgy: Fundamentals, Technology and Sustainable Development pp. 253–261Edited by Ciminelli V. S. T., Garcia O. Jr Amsterdam: Elsevier;
    [Google Scholar]
  45. Yarzábal A., Brasseur G., Bonnefoy V. 2002a; Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 209:189–195 [CrossRef]
    [Google Scholar]
  46. Yarzábal A., Brasseur G., Ratouchniak J., Lund K., Lemesle-Meunier D., DeMoss J. A., Bonnefoy V. 2002b; The high molecular weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317 [CrossRef]
    [Google Scholar]
  47. Yarzábal A., Duquesne K., Bonnefoy V. 2003; Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC33020 strain in sulfur- and in ferrous iron-media. Hydrometallurgy 71:107–114 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26966-0
Loading
/content/journal/micro/10.1099/mic.0.26966-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error