1887

Abstract

is a facultative intracellular Gram-negative rod-shaped bacterium that has become an important cause of both community-acquired and nosocomial pneumonia. Numerous studies concerning the unravelling of the virulence mechanism of this important pathogen have been initiated. As evidence is now accumulating for the involvement of protein secretion systems in bacterial virulence in general, the type I signal peptidase (LepB) of was of particular interest. This endopeptidase plays an essential role in the processing of preproteins carrying a typical amino-terminal signal peptide, upon translocation across the cytoplasmic membrane. This paper reports the cloning and the transcriptional analysis of the gene encoding the type I signal peptidase (SPase). Reverse transcription PCR experiments showed clear expression when was grown both in culture medium, and also intracellularly in , a natural eukaryotic host of . In addition, LepB was shown to be encoded by a polycistronic mRNA transcript together with two other proteins, i.e. a LepA homologue and a ribonuclease III homologue. SPase activity of the LepB protein was demonstrated by complementation analysis in a temperature-sensitive mutant. Protein sequence and predicted membrane topology were compared to those of leader peptidases of other Gram-negative human pathogens. Most strikingly, a strictly conserved methionine residue in the substrate binding pocket was replaced by a leucine residue, which might influence substrate recognition. Finally it was shown by experiments that LepB is a target for (5,6)-6-[()-acetoxyethyl]-penem-3-carboxylate, a specific inhibitor of type I SPases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26973-0
2004-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501475.html?itemId=/content/journal/micro/10.1099/mic.0.26973-0&mimeType=html&fmt=ahah

References

  1. Allsop A. E., Brooks G., Bruton G.8 other authors 1995; Penem inhibitors of bacterial signal peptidase. Bioorg Med Chem Lett 5:443–448 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Aragon V., Kurtz S., Flieger A., Neumeister B., Cianciotto N. P. 2000; Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. Infect Immun 68:1855–1863 [CrossRef]
    [Google Scholar]
  4. Aragon V., Kurtz S., Cianciotto N. P. 2001; Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect Immun 69:1777–1785
    [Google Scholar]
  5. Aragon V., Rossier O., Cianciotto N. P. 2002; Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology 148:2223–2231
    [Google Scholar]
  6. Bairl A., Müller P. 1998; A second gene for type I signal peptidase in Bradyrhyzobium japonicum, sipF, is located near genes involved in RNA processing and cell division. Mol Gen Genet 260:346–356
    [Google Scholar]
  7. Barbosa M. D., Lin S., Markwalder J. A.9 other authors 2002; Regulated expression of the Escherichia coli lepB gene as a tool for cellular testing of antimicrobial compounds that inhibit signal peptidase Iin vitro. Antimicrob Agents Chemother 46:3549–3554 [CrossRef]
    [Google Scholar]
  8. Barbrook A. C., Packer J. C., Howe C. J. 1996; Inhibition by penem of processing peptidases from cyanobacteria and chloroplast thylakoids. FEBS Lett 398:198–200 [CrossRef]
    [Google Scholar]
  9. Black M. T. 1993; Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad. J Bacteriol 175:4957–4961
    [Google Scholar]
  10. Black M. T., Bruton G. 1998; Inhibitors of bacterial signal peptidases. Curr Pharm Des 4:133–154
    [Google Scholar]
  11. Bruton G., Huxley A., O'Hanlon P. & 11 other authors; 2003; Lipopeptide substrates for SpsB, the Staphylococcus aureus type I signal peptidase: design, conformation and conversion to alpha-ketoamide inhibitors. Eur J Med Chem 38:351–356 [CrossRef]
    [Google Scholar]
  12. Christie P. J. 2001; Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305 [CrossRef]
    [Google Scholar]
  13. Chu H. H., Hoang V., Kreutzmann P., Hofemeister B., Melzer M., Hofemeister J. 2002; Identification and properties of type I signal peptidases of Bacillus amyloliquefaciens. Eur J Biochem 269:458–469 [CrossRef]
    [Google Scholar]
  14. Cregg K. M., Wilding E. I., Black M. T. 1996; Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase fromStaphylococcus aureus. J Bacteriol 178:5712–5718
    [Google Scholar]
  15. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138 [CrossRef]
    [Google Scholar]
  16. Edelstein P. H. 1981; Improved semiselective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. J Clin Microbiol 14:298–303
    [Google Scholar]
  17. Engler-Blum G., Meier M., Frank J., Müller G. A. 1993; Reduction of background problems in nonradioactive Northern and Southern blots analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210:235–244 [CrossRef]
    [Google Scholar]
  18. Finlay B. B., Falkow S. 1997; Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169
    [Google Scholar]
  19. Geukens N., Lammertyn E., Van Mellaert L.7 other authors 2001; Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 183:4752–4760 [CrossRef]
    [Google Scholar]
  20. Geukens N., Lammertyn E., Van Mellaert L., Engelborghs Y., Mellado R. P., Anné J. 2002; Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. J Biotechnol 96:79–91 [CrossRef]
    [Google Scholar]
  21. Hales L. M., Shuman H. A. 1999; Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect Immun 67:3662–3666
    [Google Scholar]
  22. Hoeltke H. J., Schneider S., Ettl I., Binsack R., Obermaier I., Seller M., Sagner G. 1995; Rapid, highly sensitive detection of digoxigenin-labeled nucleic acids by improved chemiluminescent alkaline phosphatase substrates. Biochemica (Boehringer 1:17–20
    [Google Scholar]
  23. Inada T., Court D. L., Ito K., Nakamura Y. 1989; Conditionally lethal amber mutations in the leader peptidase gene of Escherichia coli. J Bacteriol 171:585–587
    [Google Scholar]
  24. Lee V. T., Schneewind O. 2001; Protein secretion and the pathogenesis of bacterial infections. Genes Dev 15:1725–1752 [CrossRef]
    [Google Scholar]
  25. Liles M. R., Edelstein P. H., Cianciotto N. P. 1999; The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol 31:959–970 [CrossRef]
    [Google Scholar]
  26. March P. E., Inouye M. 1985; Characterization of the lep operon of Escherichia coli. Identification of the promoter and the gene upstream of the signal peptidase I gene. J Biol Chem 260:7206–7213
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Biology Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Moffat J. F., Tompkins L. S. 1992; A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect Immun 60:296–301
    [Google Scholar]
  29. Müller P., Ahrens K., Klauche A. 1995; A TnphoA insertion within the Bradyrhizobium japonicum sipS gene, homologous to prokaryotic signal peptidases results in extensive exchanges in the expression of the PMB-specific nodulins of infected soybean (Glycine max) cells. Mol Microbiol 18:831–840 [CrossRef]
    [Google Scholar]
  30. Paetzel M., Dalbey R. E., Strynadka N. J. C. 1998; Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396:186–190 [CrossRef]
    [Google Scholar]
  31. Paetzel M., Dalbey R. E., Strynadka N. C. J. 2000; The structure and mechanism of bacterial type I signal peptidases: a novel antibiotic target. Pharm Ther 87:27–49 [CrossRef]
    [Google Scholar]
  32. Paetzel M., Karla A., Strynadka N. C. J., Dalbey R. E. 2002; Signal peptidases. Chem Rev 102:4549–4579 [CrossRef]
    [Google Scholar]
  33. Parro V., Schacht S., Anné J., Mellado R. P. 1999; Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology 145:2255–2263
    [Google Scholar]
  34. Rahman M. S., Simser J. A., Macaluso K. R., Azad A. F. 2003; Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase fromRickettsia rickettsii and Rickettsia typhi. J Bacteriol 185:4578–4584 [CrossRef]
    [Google Scholar]
  35. Rauhut R., Jager A., Conrad C., Klug G. 1996; Identification and analysis of the rnc gene for RNase III inRhodobacter capsulatus. Nucleic Acids Res 24:1246–1251 [CrossRef]
    [Google Scholar]
  36. Rossier O., Starkenburg S. R., Cianciotto N. P. 2004; Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 72:310–321 [CrossRef]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Sandkvist M. 2001; Biology of type II secretion. Mol Microbiol 40:271–283 [CrossRef]
    [Google Scholar]
  39. Segal G., Shuman H. A. 1998; Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30:197–208 [CrossRef]
    [Google Scholar]
  40. Segal G., Purcell M., Shuman H. A. 1998; Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95:1669–1674 [CrossRef]
    [Google Scholar]
  41. Segal G., Russo J. J., Shuman H. A. 1999; Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34:799–809 [CrossRef]
    [Google Scholar]
  42. Tusnady G. E., Simon I. 1998; Principles governing amino acid composition of integral membrane proteins: applications to topology prediction. J Mol Biol 283:489–506 [CrossRef]
    [Google Scholar]
  43. van Dijl J. M., van den Bergh R., Reversma T., Smith H., Bron S., Venema G. 1990; Molecular cloning of the Salmonella Typhimurium lep gene in Escherichia coli. Mol Gen Genet 223:233–240 [CrossRef]
    [Google Scholar]
  44. van Dijl J. M., de Jong A., Venema G., Bron S. 1995; Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases. J Biol Chem 270:3611–3618 [CrossRef]
    [Google Scholar]
  45. Von Heijne G. 1983; Patterns of amino acids near signal sequence cleavage sites. Eur J Biochem 133:17–21 [CrossRef]
    [Google Scholar]
  46. Zhang Y. B., Greenberg B., Lacks S. A. 1997; Analysis of a Streptococcus pneumoniae gene encoding signal peptidase I and overproduction of the enzyme. Gene 194:249–255 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26973-0
Loading
/content/journal/micro/10.1099/mic.0.26973-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error