1887

Abstract

Two strains of obligate chemolithoautotrophic sulfur-oxidizing bacteria were isolated from soda-lake sediments by enrichment culture with thiocyanate and nitrate at pH 9·9. The isolates were capable of growth with thiocyanate or thiosulfate as electron donor, either aerobically or anaerobically, and with nitrate or nitrite as electron acceptor. Cyanate was identified as an intermediate of thiocyanate oxidation, while sulfate, ammonia and dinitrogen gas were the final products. The anaerobic growth on thiocyanate plus nitrate was much slower ( =0·006 h) than on thiosulfate plus nitrate ( =0·02 h), while growth yields were similar (4·8 and 5·1 g protein mol, respectively). On the basis of their phenotypic and genetic properties, strains ARhD 1 and ARhD 2 are described as a novel species of the genus , with the highest similarity to . The name sp. nov. is proposed for this novel species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27015-0
2004-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502435.html?itemId=/content/journal/micro/10.1099/mic.0.27015-0&mimeType=html&fmt=ahah

References

  1. Andreoni V., Ferrari A., Pagani A., Sorlini C., Tandoi V., Treccani V. 1988; Thiocyanate degradation by denitrifying mixed cultures of bacteria. Ann Microbiol Enzimol 38:193–200
    [Google Scholar]
  2. Cypionka H., Pfennig N. 1986; Growth yield of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143:396–399 [CrossRef]
    [Google Scholar]
  3. De Kruyff C. D., van der Walt J. I., Schwartz H. M. 1957; The utilization of thiocyanate and nitrate by thiobacilli. Antonie van Leeuwenhoek 23:305–316 [CrossRef]
    [Google Scholar]
  4. Dictor M.-C., Battaglia-Brunet F., Morin D., Bories A., Clarens M. 1997; Biological treatment of gold ore cyanidation wastewater in fixed bed reactors. Environ Pollut 97:287–294 [CrossRef]
    [Google Scholar]
  5. Gries-Romijn-van Eck. 1966; Physiological and chemical test for drinking water. NEN 1056, IY-2 Nederlandse Normalisatie Instituut Rijswijk
  6. Happold F. C., Johnstone K. I., Roger H. S., Youatt J. B. 1954; The isolation and characteristics of an organism oxidizing thiocyanate. J Gen Microbiol 10:261–266 [CrossRef]
    [Google Scholar]
  7. Happold F. C., Jones G. L., Pratt D. B. 1958; Utilization of thiocyanate by Thiobacillus thioparus and T. thiocyanooxidans. Nature 182:266–267 [CrossRef]
    [Google Scholar]
  8. Katayama Y., Kuraishi H. 1978; Characteristics of Thiobacillus thioparus and its thiocyanate assimilation. Can J Microbiol 24:804–810 [CrossRef]
    [Google Scholar]
  9. Katayama Y., Narahara Y., Inoue Y., Amano F., Kanagawa T., Kuraishi H. 1992; A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulphide from thiocyanate. J Biol Chem 267:9170–9175
    [Google Scholar]
  10. Katayama Y., Kanagawa T., Kuraishi H. 1993; Emission of carbonyl sulphide by Thiobacillus thioparus grown with thiocyanate in pure and mixed cultures. FEMS Microbiol Lett 114:223–228 [CrossRef]
    [Google Scholar]
  11. Katayama Y., Matsushita Y., Kaneko M., Kondo M., Mizuno T., Nyunoya H. 1998; Cloning of genes coding for the subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J Bacteriol 180:2583–2589
    [Google Scholar]
  12. Kelly D. P. 1982; Biochemistry of the chemolithoautotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B 298:499–528 [CrossRef]
    [Google Scholar]
  13. Kelly D. P., Baker S. C. 1990; The organosulphur cycle: aerobic and anaerobic processes leading to turnover of C1-sulphur compounds. FEMS Microbiol Rev 87:241–246 [CrossRef]
    [Google Scholar]
  14. Kelly D. P., Chambers T. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulphate and tetrathionate. Anal Chem 41:898–902 [CrossRef]
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  16. Murillo F. M., Gugliuzza T., Senko J., Basu P., Stolz J. 1999; A heme-C-containing enzyme complex that exhibits nitrate and nitrite reductase activity from the dissimilatory iron-reducing bacterium Geobacter metallireducens. Arch Microbiol 172:313–320 [CrossRef]
    [Google Scholar]
  17. Pfennig N., Lippert K. D. 1966; Über das Vitamin B12-bedürfnis phototropher Schwefel Bacterien. Arch Microbiol 55:245–256
    [Google Scholar]
  18. Smith N. A., Kelly D. P. 1988; Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol 134:3041–3048
    [Google Scholar]
  19. Sörbo B. 1957; A colorimetric determination of thiosulphate. Biochim Biophys Acta 23:412–416 [CrossRef]
    [Google Scholar]
  20. Sorokin D. Y., Muyzer G., Brinkhoff T., Kuenen J. G., Jetten M. 1998; Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species – Nitrobacter alkalicus. Arch Microbiol 170:345–352 [CrossRef]
    [Google Scholar]
  21. Sorokin D. Yu, Tourova T. P., Lysenko A. M., Kuenen J. G. 2001a; Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67:528–538 [CrossRef]
    [Google Scholar]
  22. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen J. G. 2001b; Thioalkalimicrobium sibiricum, Thioalkalimicrobium aerophilum gen. nov., sp. nov., and Thioalkalivibrio versutus, Thioalkalivibrio nitratis, Thioalkalivibrio denitrificans gen. nov.,sp. nov., new obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580
    [Google Scholar]
  23. Sorokin D. Y., Tourova T. P., Schmid M., Wagner M., Koops H.-P., Kuenen J. G., Jetten M. 2001c; Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 176:170–177 [CrossRef]
    [Google Scholar]
  24. Sorokin D. Yu, Kuenen J. G., Jetten M. 2001d; Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulphur-oxidizing bacterium Thialkalivibrio denitrificans. Arch Microbiol 175:94–101 [CrossRef]
    [Google Scholar]
  25. Sorokin D. Y., Tourova T. P., Lysenko A. M., Mityushina L. L., Kuenen J. G. 2002; Thialkalivibrio thiocyanoxidans sp.nov. and Thialkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulphur-oxidizing bacteria from soda lakes capable of growth on thiocyanate. Int J Syst Evol Microbiol 52:657–664
    [Google Scholar]
  26. Sorokin D. Y., Antipov A. N., Kuenen J. G. 2003; Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake. Arch Microbiol 180:127–133 [CrossRef]
    [Google Scholar]
  27. Visser J. M., Robertson L. A., Van Verseveld H. W., Kuenen J. G. 1997; Sulfur production by obligately chemolithoautotrophic Thiobacillus species. Appl Environ Microbiol 63:2300–2305
    [Google Scholar]
  28. Weatherburn M. V. 1967; Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974 [CrossRef]
    [Google Scholar]
  29. Wood J. L. 1975; Biochemistry. In Thiocyanic Acid and its Derivatives pp 156–252Edited by Newman A. A. London, New York, San Francisco: Academic Press;
    [Google Scholar]
  30. Youatt J. B. 1954; Studies on the metabolism of Thiobacillus thiocyanooxidans. J Gen Microbiol 11:139–149 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27015-0
Loading
/content/journal/micro/10.1099/mic.0.27015-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error