1887

Abstract

Conditions in the infected human host trigger virulence attributes of the fungal pathogen . Specific inducers and elevated temperatures lead to hyphal development or regulate chlamydospore development. To explore if these processes are affected by membrane lipids, an investigation of the functions of the Ole1 fatty acid desaturase (stearoyl-CoA desaturase) in , which synthesizes oleic acid, was undertaken. A conditional strain expressing from the regulatable promoter was unable to grow in repressing conditions, indicating that is an essential gene. In contrast, a mutant lacking both alleles of , encoding a Ole1p homologue, was viable and had no apparent phenotypes. Partial repression of slightly lowered oleic acid levels and decreased membrane fluidity; these conditions permitted growth in the yeast form, but prevented hyphal development in aerobic conditions and blocked the formation of chlamydospores. In contrast, in hypoxic conditions, which trigger an alternative morphogenetic pathway, hyphal morphogenesis was unaffected. Because aerobic morphogenetic signalling and oleic acid biosynthesis require oxygen, it is proposed that oleic acid may function as a sensor activating specific morphogenetic pathways in normoxic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27029-0
2004-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/6/mic1501991.html?itemId=/content/journal/micro/10.1099/mic.0.27029-0&mimeType=html&fmt=ahah

References

  1. Ananthan J., Goldberg A. L., Voellmy R. 1986; Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524 [CrossRef]
    [Google Scholar]
  2. Bossie M. A., Martin C. E. 1989; Nutritional regulation of yeast delta-9 fatty acid desaturase activity. J Bacteriol 171:6409–6413
    [Google Scholar]
  3. Braun B. R., Johnson A. D. 1997; Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109 [CrossRef]
    [Google Scholar]
  4. Braun S., Matuschewski K., Rape M., Thoms S., Jentsch S. 2002; Role of the ubiquitin-selective CDC48(UFD1/NLP4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21:615–621 [CrossRef]
    [Google Scholar]
  5. Brown D. H., Giusani A. D., Chen X., Kumamoto C. A. Jr 1999; Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34:651–662 [CrossRef]
    [Google Scholar]
  6. Calvo A. M., Gardner H. W., Keller N. P. 2001; Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem 276:25766–25774 [CrossRef]
    [Google Scholar]
  7. Care R. S., Trevethick J., Binley K. M., Sudbery P. E. 1999; The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34:792–798 [CrossRef]
    [Google Scholar]
  8. Carratu L., Franceschelli S., Pardini C. L., Kobayashi G. S., Horvath I., Vigh L., Maresca B. 1996; Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci U S A 93:3870–3875 [CrossRef]
    [Google Scholar]
  9. Chatterjee M. T., Khalawan S. A., Curran B. P. 1997; Alterations in cellular lipids may be responsible for the transient nature of the yeast heat shock response. Microbiology 143:3063–3068 [CrossRef]
    [Google Scholar]
  10. Chatterjee M. T., Khalawan S. A., Curran B. P. G. 2001; Subtle alterations in growth medium composition can dramatically alter the percentage of unsaturated fatty acids in the yeast Saccharomyces cerevisiae. Yeast 18:81–88 [CrossRef]
    [Google Scholar]
  11. Choi J. Y., Stukey J., Hwang S. Y., Martin C. E. 1996; Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 271:3581–3589 [CrossRef]
    [Google Scholar]
  12. Cossins A. R. 1994 Temperature Adaptation of Biological Membranes London: Portland Press;
  13. Daum G., Tuller G., Nemec T.14 other authors 1999; Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 15:601–604 [CrossRef]
    [Google Scholar]
  14. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  15. Faergeman N. J., Black P. N., Zhao X. D., Knudsen J., DiRusso C. C. 2001; The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J Biol Chem 276:37051–37059 [CrossRef]
    [Google Scholar]
  16. Fonzi W., Irwin Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728
    [Google Scholar]
  17. Fujimori K., Anamnart S., Nakagawa Y., Sugioka S., Ohta D., Oshima Y., Yamada Y., Harashima S. 1997; Isolation and characterization of mutations affecting expression of the delta9-fatty acid desaturase gene, OLE1, in Saccharomyces cerevisiae. FEBS Lett 413:226–230 [CrossRef]
    [Google Scholar]
  18. Horvath I., Glatz A., Varvasovszki V. & 8 other authors; 1998; Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci U S A 95:3513–3518 [CrossRef]
    [Google Scholar]
  19. Joshi K. R., Solanki A., Prakash P. 1993; Morphological identification of Candida species on glucose agar, rice extract agar and corn meal agar with and without Tween-80. Indian J Pathol Microbiol 36:48–52
    [Google Scholar]
  20. Kapteyn J. C., Hoyer L. L., Hecht J. E. & 6 other authors; 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611
    [Google Scholar]
  21. Kaur R., Bachhawat A. K. 1999; The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818 [CrossRef]
    [Google Scholar]
  22. Kwast K. E., Burke P. V., Poyton R. O. 1998; Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol 201:1177–1195
    [Google Scholar]
  23. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153 [CrossRef]
    [Google Scholar]
  24. Leuker C. E., Sonneborn A., Delbrück S., Ernst J. F. 1997; Sequence and regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene 192:235–240 [CrossRef]
    [Google Scholar]
  25. Liu H., Köhler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726 [CrossRef]
    [Google Scholar]
  26. McDonough V. M., Stukey J. E., Martin C. E. 1992; Specificity of unsaturated fatty acid-regulated expression for the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 267:5931–5936
    [Google Scholar]
  27. Mishra P., Bolard J., Prasad R. 1992; Emerging role of lipids of Candida albicans, a pathogenic dimorphic yeast. Biochim Biophys Acta 11271–14 [CrossRef]
    [Google Scholar]
  28. Mitchell A. G., Martin C. E. 1995; A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J Biol Chem 270:29766–29772 [CrossRef]
    [Google Scholar]
  29. Moskvina E., Imre E.-M., Ruis H. 1999; Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae. Mol Microbiol 32:1263–1272 [CrossRef]
    [Google Scholar]
  30. Nakagawa Y., Sugioka S., Kaneko Y., Harashima S. 2001; O2R, a novel regulatory element mediating Rox1p-independent O2 and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae. J Bacteriol 183:745–751 [CrossRef]
    [Google Scholar]
  31. Nakagawa Y., Skumoto N., Kaneko Y., Harashima S. 2002; Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713 [CrossRef]
    [Google Scholar]
  32. Nantel A., Dignard D., Bachewich C. & 12 other authors; 2002; Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465 [CrossRef]
    [Google Scholar]
  33. Noverr M. C., Toews G. B., Huffnagle G. B. 2002; Production of prostaglandins and leuktrienes by pathogenic fungi. Infect Immun 70:400–402 [CrossRef]
    [Google Scholar]
  34. Sherman F., Fink G., Hicks J. 1986 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  35. Smriti, Krishnamurthy S., Prasad R. 1999; Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter of Candida albicans. FEMS Microbiol Lett 173:475–481 [CrossRef]
    [Google Scholar]
  36. Sonneborn A., Ernst J. F., Bockmühl D. P. 1999; Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67:5514–5517
    [Google Scholar]
  37. Stewart L. C., Yaffe M. P. 1991; A role for unsaturated fatty acids in mitochondrial movement and inheritance. J Cell Biol 115:1249–1257 [CrossRef]
    [Google Scholar]
  38. Stoldt V. R., Sonneborn A., Leuker C., Ernst J. F. 1997; Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991 [CrossRef]
    [Google Scholar]
  39. Stukey J. E., McDonough V. M., Martin C. E. 1989; Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544
    [Google Scholar]
  40. Stukey J. E., McDonough V. M., Martin C. E. 1990; The OLE1 gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265:20144–20149
    [Google Scholar]
  41. Torok Z., Horvath I., Goloubinoff P., Kovacs E., Glatz A., Balogh G., Vigh L. 1997; Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci U S A 94:2192–2197 [CrossRef]
    [Google Scholar]
  42. Vasconcelles M. J., Jiang Y., McDaid K., Gilooly L., Wretzel S., Porter D. L., Martin C. E., Goldberg M. A. 2001; Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. J Biol Chem 276:14374–14384
    [Google Scholar]
  43. Vigh L., Los A. D., Murata N., Horváth I. 1993; The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipid stimulated the expression of the desAgene in Synechocystis PCC6803. Proc Natl Acad Sci U S A 90:9090–9094 [CrossRef]
    [Google Scholar]
  44. Vigh L., Maresca B., Harwood J. L. 1998; Does the membrane's physical state control the expression of heat shock and other genes?. Trends Biochem Sci 23:369–374 [CrossRef]
    [Google Scholar]
  45. Wada H., Gombos Z., Murata N. 1990; Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203 [CrossRef]
    [Google Scholar]
  46. Weber Y., Santore U. J., Ernst J. F., Swoboda R. K. 2001; Divergence of eukaryotic secretory components: the Candida albicans homolog of the Saccharomyces cerevisiae Sec20 protein is N-terminally truncated, and its levels determine antifungal drug resistance and growth. J Bacteriol 183:46–54 [CrossRef]
    [Google Scholar]
  47. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874
    [Google Scholar]
  48. Zhang S., Skalsky Y., Garfinkel D. J. 1999; MGA2 or SPT3 is required for transcription of the Δ9 desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151:473–483
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27029-0
Loading
/content/journal/micro/10.1099/mic.0.27029-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error