1887

Abstract

The extremely thermophilic bacterium HB27 synthesizes lysine through -aminoadipate (AAA). In this study, a gene encoding the enzyme that catalyses transamination of AAA was cloned as a mammalian kynurenine/AAA aminotransferase () gene homologue. A mutant with disruption of the homologue required a longer lag phase for growth and showed slower growth in minimal medium. Furthermore, addition of AAA or lysine shortened the lag phase and improved the growth rate. The homologue was therefore termed . LysN recognizes not only 2-oxoadipate, an intermediate of lysine biosynthesis, but also 2-oxoisocaproate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, intermediates of leucine, valine and isoleucine biosyntheses, respectively, along with oxaloacetate, a compound in the TCA cycle, as an amino acceptor. These results suggest multiple roles of LysN in several cellular metabolic pathways including lysine and branched-chain amino acid biosyntheses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27037-0
2004-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502327.html?itemId=/content/journal/micro/10.1099/mic.0.27037-0&mimeType=html&fmt=ahah

References

  1. Andreotti G., Cubellis M. V., Nitti G., Sannia G., Mai X., Adams M. W. W., Marino G. 1995; An extremely thermostable aromatic aminotransferase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta 1247:90–96 [CrossRef]
    [Google Scholar]
  2. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  3. Brinkman A. B., Bell S. D., Lebbink R. J., de Vos W. M., van der Oost J. 2002; The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 277:29537–29549 [CrossRef]
    [Google Scholar]
  4. Broquist H. P. 1971; Lysine biosynthesis (yeast. Methods Enzymol 17:112–119
    [Google Scholar]
  5. Cleland W. W. 1979; Statistical analysis of enzyme kinetic data. Methods Enzymol 78:103–138
    [Google Scholar]
  6. Cunin R., Glandsorff N., Oierard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352
    [Google Scholar]
  7. Hall T. R., Wallin R., Reinhart G. D., Hutson S. M. 1993; Branched chain aminotransferase isozymes. J Biol Chem 268:3092–3098
    [Google Scholar]
  8. Hidaka Y., Hasegawa M., Nakahara T., Hoshino T. 1994; The entire population of Thermus thermophilus cells is always competent at any growth phase. Biosci Biotechnol Biochem 58:1338–1339 [CrossRef]
    [Google Scholar]
  9. Hoseki J., Yano T., Koyama Y., Kuramitsu S., Kagamiyama H. 1999; Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951–956 [CrossRef]
    [Google Scholar]
  10. Iraqui I., Vissers S., Cartiaux M., Urrestarazu A. 1998; Characterization of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferase I and II reveals a new aminotransferase subfamily. Mol Gen Genet 257:238–248 [CrossRef]
    [Google Scholar]
  11. Irvin S. D., Bhattacharjee J. K. 1998; A unique fungal lysine biosynthesis enzyme shares a common ancestor with tricarboxylic acid cycle and leucine biosynthetic enzymes found in diverse organisms. J Mol Evol 46:401–408 [CrossRef]
    [Google Scholar]
  12. Kobashi N., Nishiyama M., Tanokura M. 1999; Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via α-aminoadipic acid, not via diaminopimelic acid. J Bacteriol 181:1713–1718
    [Google Scholar]
  13. Koyoma Y., Hoshino T., Tomizuka N., Furukawa K. 1986; Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340
    [Google Scholar]
  14. Kumer S., Tamura K., Jakobsen I. B., Nei M. 2001 MEGA: molecular evolutionary genetics analysis, version 2.1 University Park, PA: Pennsylvania State University;
    [Google Scholar]
  15. Matsuda M., Ogur M. 1969; Separation and specificity of the yeast glutamate-α-ketoadipate transaminase. J Biol Chem 244:3352–3358
    [Google Scholar]
  16. McHardy A. C., Tauch A., Kalinowski J., Rückert C., Pühler A. 2003; Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104:229–240 [CrossRef]
    [Google Scholar]
  17. Miyazaki J., Kobashi N., Nishiyama M., Yamane H. 2001; Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through α-aminoadipate. J Bacteriol 183:5067–5073 [CrossRef]
    [Google Scholar]
  18. Miyazaki J., Kobashi N., Fujii T., Nishiyama M., Yamane H. 2002 Characterization of a lysK gene as an argE homolog in Thermus thermophilus HB27. FEBS Lett 512269–274 [CrossRef]
    [Google Scholar]
  19. Miyazaki J., Kobashi N., Nishiyama M., Yamane H. 2003; Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of beta-decarboxylating dehydrogenase. J Biol Chem 278:1864–1871 [CrossRef]
    [Google Scholar]
  20. Nakatani Y., Fujioka M., Higashino K. 1970; α-Aminoadipate aminotransferase of rat liver mitochondria. Biochim Biophys Acta 198:219–228 [CrossRef]
    [Google Scholar]
  21. Nishida H., Nishiyama M., Kobashi N., Kosuge T., Hoshino T., Yamane H. 1999; A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res 9:1175–1183 [CrossRef]
    [Google Scholar]
  22. Rico B., Alberati-Giani D., Malherbe P., Kohler C., Broger C., Cesura A. M. 1995; Cloning and functional expression of a soluble form of kynurenine/α-aminoadipate aminotransferase from rat kidney. J Biol Chem 270:29330–29335 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  24. Sanger F., Nicklen E. F., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  25. Schut G. J., Brehm S. D., Datta S., Adams M. W. W. 2003; Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 185:3935–3947 [CrossRef]
    [Google Scholar]
  26. Tanaka T., Kawamoto N., Oshima T. 1981; Cloning of 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification the gene products. J Biochem 89:677–682
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Urrestarazu A., Vissers S., Iraqui I., Grenson M. 1998; Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol Gen Genet 257:230–237 [CrossRef]
    [Google Scholar]
  29. Van Holde K. E., Baldwin R. L. 1958; Rapid attainment of sedimentation equilibrium. J Phys Chem 62:734–743 [CrossRef]
    [Google Scholar]
  30. Vogel H. J. 1964; Distribution of lysine pathway among fungi: evolutionary implications. Am Nat 98:446–455
    [Google Scholar]
  31. Wulandari A. P., Miyazaki J., Kobashi N., Nishiyama M., Hoshino T., Yamane H. 2002; Characterization of bacterial homocitrate synthase involved in lysine biosynthesis. FEBS Lett 522:35–40 [CrossRef]
    [Google Scholar]
  32. Yvon M., Chambellon E., Bolotin A., Roudot-Algaron F. 2000; Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl Environ Microbiol 66:571–577 [CrossRef]
    [Google Scholar]
  33. Zabriskie T. M., Jackson M. D. 2000; Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27037-0
Loading
/content/journal/micro/10.1099/mic.0.27037-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error