1887

Abstract

Many bacteria, including , have a unique gene that encodes glutamate racemase. This enzyme catalyses the formation of -glutamate, which is necessary for cell wall peptidoglycan synthesis. However, has two glutamate racemase genes, named and . Since appears to be indispensable for growth in rich medium, the role of in -amino acid synthesis is vague. Experiments with - and -knockout mutants confirmed that is essential for growth in rich medium but showed that this gene was dispensable for growth in minimal medium, where executes the anaplerotic role of . LacZ fusion assays demonstrated that was expressed in both types of media but was expressed only in minimal medium, which accounted for the absence of function in rich medium. Neither nor was required for cells to synthesize poly---glutamate (-PGA), a capsule polypeptide of - and -glutamate linked through a -carboxylamide bond. Wild-type cells degraded the capsule during the late stationary phase without accumulating the degradation products, -glutamate and -glutamate, in the medium. In contrast, or mutant cells accumulated significant amounts of - but not -glutamate. Exogenous -glutamate utilization was somewhat defective in the mutants and the double mutation of and severely impaired -amino acid utilization. Thus, both racemase genes appear necessary to complete the catabolism of exogenous -glutamate generated from -PGA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27045-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1502911.html?itemId=/content/journal/micro/10.1099/mic.0.27045-0&mimeType=html&fmt=ahah

References

  1. Albano M., Hahn J., Dubnau D. 1987; Expression of competence genes in Bacillus subtilis. J Bacteriol 169:3110–3117
    [Google Scholar]
  2. Ashiuchi M., Misono H. 2002; Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14 [CrossRef]
    [Google Scholar]
  3. Ashiuchi M., Tani K., Soda K., Misono H. 1998; Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-γ-glutamate. J Biochem 123:1156–1163 [CrossRef]
    [Google Scholar]
  4. Ashiuchi M., Soda K., Misono H. 1999; Characterization of yrpC gene product of Bacillus subtilis IFO 3336 as glutamate racemase isozyme. Biosci Biotechnol Biochem 63:792–798 [CrossRef]
    [Google Scholar]
  5. Ashiuchi M., Kuwana E., Komatsu K., Soda K., Misono H. 2003; Differences in effects on DNA gyrase activity between two glutamate racemases of Bacillus subtilis, the poly-γ-glutamate synthesis-linking Glr enzyme and the YrpC (MurI) isozyme. FEMS Microbiol Lett 223:221–225 [CrossRef]
    [Google Scholar]
  6. Bao Q., Tian Y., Li W., Xu Z., Xuan Z. & 16 other authors; 2002; A complete sequence of the T. tengcongensis genome. Genome Res 12:689–700 [CrossRef]
    [Google Scholar]
  7. Belitsky B. R. others 2002; Biosynthesis of amino acids of the glutamate and aspartate families, alanine, and polyamines. In Bacillus subtilis and its Closest Relatives pp. 203–231 Edited by Sonenshein A. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Belitsky B. R., Sonenshein A. L. 1998; Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J Bacteriol 180:6298–6305
    [Google Scholar]
  9. Birrer G. A., Cromwick A. M., Gross R. A. 1994; γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol 16:265–275 [CrossRef]
    [Google Scholar]
  10. Bron S. 1990; Plasmids. In Molecular Biological Methods for Bacillus pp. 75–174 Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  11. Cheung H. Y., Vitkovic L., Freese E. 1983; Rates of peptidoglycan turnover and cell growth of Bacillus subtilis are correlated. J Bacteriol 156:1099–1106
    [Google Scholar]
  12. Doublet P., Heijenoort J. V., Bohin J. P., Mengin-Lecreulx D. 1993; The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J Bacteriol 175:2970–2979
    [Google Scholar]
  13. Dubnau D., Lovett C. M. Jr others 2002; Transformation and recombination. In Bacillus subtilis and its Closest Relatives pp. 453–471 Edited by Sonenshein A. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Eymann C., Homuth G., Scharf C., Hecker M. 2002; Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptional analysis. J Bacteriol 184:2500–2520 [CrossRef]
    [Google Scholar]
  15. Fotheringham I. G., Bledig S. A., Taylor P. P. 1998; Characterization of the genes encoding d-amino acid transaminase and glutamate racemase, two d-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC10208. J Bacteriol 180:4319–4323
    [Google Scholar]
  16. Guérout-Fleury A.-M., Shazand K., Frandsen N., Stragier P. 1995; Antibiotic resistance cassettes for Bacillus subtilis. Gene 167:335–336 [CrossRef]
    [Google Scholar]
  17. Guérout-Fleury A.-M., Frandsen N., Stragier P. 1996; Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61 [CrossRef]
    [Google Scholar]
  18. Inoue H., Nojima H., Okayama H. 1990; High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28 [CrossRef]
    [Google Scholar]
  19. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B. 18 other authors 2003; Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91 [CrossRef]
    [Google Scholar]
  20. Kada S., Nanamiya H., Ohnishi Y., Kawamura F., Horinouchi S. 2004; Transcriptional regulation of the poly-γ-glutamate related glutamate racemase gene of Bacillus subtilis (natto).In Abstracts of the 2004 Annual Meeting of Japan Society for Bioscience, Biotechnology and Agrochemistry. abstract2A05p14 () http://www.jsbba.or.jp
    [Google Scholar]
  21. Kambourova M., Tangney M., Priest F. G. 2001; Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl Environ Microbiol 67:1004–1007 [CrossRef]
    [Google Scholar]
  22. Kane J. F., Wakim J., Fischer R. S. 1981; Regulation of glutamate dehydrogenase from Bacillus subtilis. J Bacteriol 148:1002–1005
    [Google Scholar]
  23. Karatas A. Y., Cetin S., Ozcengiz G. 2003; The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0Aand abrB genes on bacilysin biosynthesis in Bacillus subtilis. . Biochim Biophys Acta 162651–56 [CrossRef]
    [Google Scholar]
  24. Kimura K., Itoh Y. 2003; Characterization of poly-γ-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-γ-glutamate. Appl Environ Microbiol 69:2491–2497 [CrossRef]
    [Google Scholar]
  25. Ko Y. H., Gross R. A. 1998; Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC9945a. Biotechnol Bioeng 57:430–437 [CrossRef]
    [Google Scholar]
  26. Kobayashi K., Ehrlich S. D., Albertini A. 96 other authors 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683 [CrossRef]
    [Google Scholar]
  27. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G. 146 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  28. Lazazzera B. A., Palmer T., Quisel J., Grossman A. D. 1999; Cell density control of gene expression and development in Bacillus subtilis. In Cell-Cell Signaling in Bacteria pp. 27–46 Edited by Dunny G. M., Winans S. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Molle V., Nakamura Y., Shivers R. P., Yamaguchi H., Losick R., Fijita Y., Sonenshein A. L. 2003; Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 185:1911–1922 [CrossRef]
    [Google Scholar]
  30. Nagai T., Koguchi K., Itoh Y. 1997; Chemical analysis of poly-γ-glutamic acid produced by plasmid-free Bacillus subtilis (natto): evidence that plasmids are not involved in poly-γ-glutamic acid production. J Gen Appl Microbiol 43:139–143 [CrossRef]
    [Google Scholar]
  31. Nicholson W. L., Setlow P. 1990; Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus pp. 391–450 Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  32. Osborn M. J. 1969; Structure and biosynthesis of the bacterial cell wall. Annu Rev Biochem 38:501–538 [CrossRef]
    [Google Scholar]
  33. Pucci M. J., Thanassi J. A., Ho H. T., Falk P. J., Dougherty T. J. 1995; Staphylococcus haemolyticus contains two d-glutamic acid biosynthetic activities, a glutamate racemase and a d-amino acid transaminase. J Bacteriol 177:336–342
    [Google Scholar]
  34. Ratnayake-Lecamwasam M., Serror P., Wang K.-W., Sonenshein A. L. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15:1093–1103 [CrossRef]
    [Google Scholar]
  35. Read T. D., Peterson S. N., Tourasse N., Baillie L. W., Paulsen I. T. & 47 other authors; 2003; The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 432:81–86
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Serror P., Sonenshein A. L. 1996; CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 178:5910–5915
    [Google Scholar]
  38. Soutourina J., Plateau P., Blanquet S. 2000; Metabolism of d-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J Biol Chem 275:32535–32542 [CrossRef]
    [Google Scholar]
  39. Suzuki T., Tahara Y. 2003; Characterization of the Bacillus subtilis ywtD gene, whose product is involved in γ-polyglutamic acid degradation. J Bacteriol 185:2379–2382 [CrossRef]
    [Google Scholar]
  40. Takami H., Nakasone K., Takaki Y. 9 other authors 2000; Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331 [CrossRef]
    [Google Scholar]
  41. Thorne C. B. 1993; Bacillus anthracis. In Bacillus subtilis and Other Gram-Positive Bacteria pp. 113–124 Edited by Sonenshein A. L.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Thorne C. B., Gómez C. G., Noyes H. E., Housewright R. D. 1954; Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol 68:307–315
    [Google Scholar]
  43. Tran L.-S. P., Nagai T., Itoh Y. 2000; Divergent structure of the comQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol 37:1159–1171 [CrossRef]
    [Google Scholar]
  44. Urushibata Y., Tokuyama S., Tahara Y. 2002; Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production. J Bacteriol 184:337–343 [CrossRef]
    [Google Scholar]
  45. Vagner V., Dervyn E., Ehrlich D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  46. Vieira J., Messing J. 1987; Production of a single-strand plasmid DNA. Methods Enzymol 153:3–11
    [Google Scholar]
  47. Yang H., Zheng G., Peng X., Qiang B., Yuan J. 2003; d-amino acids and d-Tyr-tRNATyr deacylase: stereospecificity of the translation machine revisited. FEBS Lett 552:95–98 [CrossRef]
    [Google Scholar]
  48. Zuber P., Nakano M. M., Marahiel M. A. 1993; Peptide antibiotics. In Bacillus subtilis and Other Gram-Positive Bacteria pp. 897–916 Edited by Sonenshein A. L.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27045-0
Loading
/content/journal/micro/10.1099/mic.0.27045-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error