1887

Abstract

A cluster of multicopper oxidase genes (, , , ) from the lignin-degrading basidiomycete is described. The four genes share the same transcriptional orientation within a 25 kb region. , and 3 are tightly grouped, with intergenic regions of 2·3 and 0·8 kb, respectively, whereas is located 11 kb upstream of 1. All are transcriptionally active, as shown by RT-PCR. Comparison of cDNAs and the corresponding genomic sequences identified 14–19 introns within each gene. Based on homology and intron composition, two subfamilies of sequences could be identified. The sequences have copper-binding motifs similar to ferroxidase proteins, but different from fungal laccases. Thus, these sequences constitute a novel branch of the multicopper oxidase family. Analysis of several cDNA clones obtained from poly(A) RNA revealed the presence of transcripts of various lengths. Splice variants from , and were characterized. They generally exhibited the presence of one to five introns, whereas other transcripts lacked some exons. In all cases, the presence of introns leads to frame shifts that give rise to premature stop codons. In aggregate, these investigations show that possesses a novel family of multicopper oxidases which also feature clustering and incomplete processing of some of their transcripts, a phenomenon referred to in this paper as ‘altered splicing’.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27072-0
2004-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502775.html?itemId=/content/journal/micro/10.1099/mic.0.27072-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. 1994; The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410 [CrossRef]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1992 Short Protocols in Molecular Biology, 2nd edn. New York: Greene Publishing Associates;
  4. Berka R. M., Schneider P., Golightly E. J., Brown S. H., Madden M., Brown K. M., Halkier T., Mondorf K., Xu F. 1997; Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63:3151–3157
    [Google Scholar]
  5. Bertrand T., Jolivalt C., Briozzo P., Caminade E., Joly N., Madzak C., Mougin C. 2002; Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333 [CrossRef]
    [Google Scholar]
  6. Birch P. R., Sims P. F., Broda P. 1995; Substrate-dependent differential splicing of introns in the regions encoding the cellulose binding domains of two exocellobiohydrolase I-like genes in Phanerochaete chrysosporium. Appl Environ Microbiol 61:3741–3744
    [Google Scholar]
  7. Boel E., Hjort I., Svensson B., Norris F., Norris K. E., Fill N. P. 1984; Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs. EMBO J 3:1097–1102
    [Google Scholar]
  8. Bonaccorsi di Patti M. C., Felice M. R., Camuti A. P., Lania A., Musci G. 2000; The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3. FEBS Lett 472:283–286 [CrossRef]
    [Google Scholar]
  9. Choi G. H., Larson T. G., Nuss D. L. 1992; Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant–Microbe Interact 5:119–128 [CrossRef]
    [Google Scholar]
  10. Covert S. F., Vanden Wymelenberg A., Cullen D. 1992; Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol 58:2168–2175
    [Google Scholar]
  11. Cullen D. 1997; Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289 [CrossRef]
    [Google Scholar]
  12. Davis C. A., Grate L., Spingola M., Ares M., Jr. 2000; Test of introns predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res 28:1700–1706 [CrossRef]
    [Google Scholar]
  13. Dittmer J., Patel N., Dhawale S., Dhawale S. 1997; Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol Lett 149:65–70 [CrossRef]
    [Google Scholar]
  14. Ducros V., Brzozowski A. M., Wilson K. S., Brown S. H., Ostergaard P., Schneider P., Yaver D. S., Pedersen A. H., Davies G. J. 1998; Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2·2 Å resolution. Nat Struct Biol 5:310–316 [CrossRef]
    [Google Scholar]
  15. Eriksson K.-E. L., Blanchette R. A., Ander P. 1990; Microbial and enzymatic degradation of wood and wood components. Springer Series in Wood Science Edited by Timell T. E. Berlin: Springer;
    [Google Scholar]
  16. Geiger J. P., Nicole M., Nandris D., Rio B. 1986; Root diseases of Hevea brasiliensis. Physiological and biochemical aspect of root aggregation. Phytochemistry 24:2559–2561
    [Google Scholar]
  17. Gold M., Alic M. 1993; Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622
    [Google Scholar]
  18. Hakulinen N., Kiiskinen L. L., Kruus K., Saloheimo M., Paananen A., Koivula A., Rouvinen J. 2002; Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605
    [Google Scholar]
  19. Hatakka A. 1994; Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135 [CrossRef]
    [Google Scholar]
  20. Jonsson L., Sjostrom K., Haggstrom I., Nyman P. O. 1995; Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta 1251:210–215 [CrossRef]
    [Google Scholar]
  21. Kirk T. K., Cullen D. 1998; Enzymology and molecular genetics of wood degradation by white-rot fungi. In Environmentally Friendly Technologies for the Pulp and Paper Industry pp 273–308 Edited by Young R. A., Akhtar M. New York: Wiley;
    [Google Scholar]
  22. Kirk T. K., Farrell R. L. 1987; Enzymatic ‘combustion’: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505 [CrossRef]
    [Google Scholar]
  23. Kumar S. V., Phale P. S., Durani S., Wangikar P. P. 2003; Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394 [CrossRef]
    [Google Scholar]
  24. Larrondo L., Salas L., Melo F., Cullen D, Vicuña R. 2003; A novel extracellular multicopper oxidase with ferroxidase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 69:6257–6263 [CrossRef]
    [Google Scholar]
  25. Leatham G., Stahmann M. A. 1981; Studies on the laccase of Lentinus edodes: specificity, location and the development of fruiting bodies. J Gen Microbiol 125:147–157
    [Google Scholar]
  26. Lodato P., Alcaino J., Barahona S., Retamales P., Cifuentes V. 2003; Alternative splicing of transcripts from crtI and crtYB genes of Xanthophyllomyces dendrorhous. Appl Environ Microbiol 69:4676–4682 [CrossRef]
    [Google Scholar]
  27. Mansur M., Suarez T., Fernandez-Larrea J. B., Brizuela M. A., Gonzalez A. E. 1997; Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197. Appl Environ Microbiol 63:2637–2646
    [Google Scholar]
  28. Manubens A., Avila M., Canessa P., Vicuña R. 2003; Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43:433–438 [CrossRef]
    [Google Scholar]
  29. Marbach I., Harel E., Mayer A. M. 1985; Pectin, a second inducer for laccase production by Botrytis cinerea. Phytochemistry 24:2559–2561 [CrossRef]
    [Google Scholar]
  30. Martinez A. T. 2002; Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444 [CrossRef]
    [Google Scholar]
  31. Martinez D., Larrondo L. F., Putnam N.12 other authors 2004; Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700 [CrossRef]
    [Google Scholar]
  32. Palmieri G., Giardina P., Bianco C., Fontanella B., Sannia G. 2000; Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924 [CrossRef]
    [Google Scholar]
  33. Perry C., Smith M., Britnell C., Wood D., Thurston C. 1993; Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol 139:1209–1218 [CrossRef]
    [Google Scholar]
  34. Piontek K., Antorini M., Choinowski T. 2002; Crystal structure of a laccase from the fungus Trametes versicolor at 1·90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669 [CrossRef]
    [Google Scholar]
  35. Podgornik H., Stegu M., Zibert E., Perdih A. 2001; Laccase production by Phanerochaete chrysosporium – an artefact caused by Mn(III)?. Lett Appl Microbiol 32:407–411 [CrossRef]
    [Google Scholar]
  36. Rodriguez C. S., Santro R., Cameselle C., Sanroman A. 1997; Laccase production in semi-solid cultures of Phanerochaete chrysosporium. Biotechnol Lett 19:995–998 [CrossRef]
    [Google Scholar]
  37. Sachs M. S., Yanofsky C. 1991; Developmental expression of genes involved in conidiation and amino acid biosynthesis in Neurospora crassa. Dev Biol 148:117–128 [CrossRef]
    [Google Scholar]
  38. Shi X., Stoj C., Romeo A., Kosman D. J., Zhu Z. 2003; Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity inSaccharomyces cerevisiae. J Biol Chem 278:50309–50315 [CrossRef]
    [Google Scholar]
  39. Sims P. F., Soares-Felipe M. S., Wang Q., Gent M. E., Tempelaars C., Broda P. 1994; Differential expression of multiple exo-cellobiohydrolase I-like genes in the lignin-degrading fungus Phanerochaete chrysosporium. Mol Microbiol 12:209–216 [CrossRef]
    [Google Scholar]
  40. Soden D. M., Dobson A. D. 2001; Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiol 147:1755–1763
    [Google Scholar]
  41. Solomon E. I., Sundaram U. M., Machonkin T. E. 1996; Multicopper oxidases and oxigenases. Chem Rev 96:2563–2605 [CrossRef]
    [Google Scholar]
  42. Srinivasan C., D'Souza T., Boominathan K., Reddy C. 1995; Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 61:4274–4277
    [Google Scholar]
  43. Stewart P., Cullen D. 1999; Genomic organization and differential gene regulation of a lignin peroxidase gene cluster in Phanerochaete chrysosporium. J Bacteriol 181:3427–3432
    [Google Scholar]
  44. Stewart P., Gaskell J., Cullen D. 2000; A homokaryotic derivative of a Phanerochaete chrysosporium strain and its use in genomic analysis of repetitive elements. Appl Environ Microbiol 66:1629–1633 [CrossRef]
    [Google Scholar]
  45. Stoj C., Kosman D. J. 2003; Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554:422–426 [CrossRef]
    [Google Scholar]
  46. Thurston C. F. 1994; The structure and function of fungal laccases. Microbiology 140:19–26 [CrossRef]
    [Google Scholar]
  47. Wahleithner J. A., Xu F., Brown K., Brown S., Golightly E., Halkier T., Kauppinen S., Pederson A., Schneider P. 1995; The identification and characterization of four laccase genes from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403
    [Google Scholar]
  48. Wang T. P., Quintanar L., Severance S., Solomon E. I., Kosman D. J. 2003; Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae. J Biol Inorg Chem 8:611–620 [CrossRef]
    [Google Scholar]
  49. Williams D. M., Lee G. R., Cartwright G. E. 1974; Ferroxidase activity of rat ceruloplasmin. Am J Physiol 227:1094–1097
    [Google Scholar]
  50. Wymelenberg A. V., Denman S., Dietrich D.7 other authors 2002; Transcript analysis of genes encoding a family 61 endoglucanase and a putative membrane-anchored family 9 glycosyl hydrolase from Phanerochaete chrysosporium. Appl Environ Microbiol 68:5765–5768 [CrossRef]
    [Google Scholar]
  51. Yadav J. S., Soellner M. B., Loper J. C., Mishra P. K. 2003; Tandem cytochrome P-450 monooxygenase genes and splice variants in the white rot fungus Phanerochaete chrysosporium: cloning, sequence analysis, and regulation of differential expression. Fungal Genet Biol 38:10–21 [CrossRef]
    [Google Scholar]
  52. Yaver D., Golightly E. 1996; Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 181:95–102 [CrossRef]
    [Google Scholar]
  53. Ye D., Lee C., Queener S. F. 2001; Differential splicing of Pneumocystis carinii f. sp. carinii inosine 5′-monophosphate dehydrogenase pre-mRNA. Gene 263:151–158 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27072-0
Loading
/content/journal/micro/10.1099/mic.0.27072-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error