1887

Abstract

The gene of SN2 (Ms) was cloned from two independent partial genomic DNA libraries and characterized, along with the identification of and as the neighbouring upstream and downstream genes respectively. The genomic organization of the Ms locus was found to be identical to that of the gene (Mt) and similar to that of other bacterial genera, but with divergence in the upstream region. The Ms gene is 2·3 kb in size and encodes the AAA (TPases ssociated with diverse cellular ctivities) family Zn-metalloprotease FtsH (MsFtsH) of 85 kDa molecular mass. This was demonstrated from the expression of the full-length recombinant gene in JM109 cells and from the identification of native MsFtsH in SN2 cell lysates by Western blotting with anti-MtFtsH and anti-EcFtsH antibodies respectively. The recombinant and the native MsFtsH proteins were found localized to the membrane of and cells respectively. Expression of MsFtsH protein in was toxic and resulted in growth arrest and filamentation of cells. The Ms gene did not complement lethality of a Δ3 : : kan mutation in , but when expressed in cells, it efficiently degraded conventional FtsH substrates, namely protein and the protein translocase subunit SecY, of cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27090-0
2004-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502629.html?itemId=/content/journal/micro/10.1099/mic.0.27090-0&mimeType=html&fmt=ahah

References

  1. Akiyama Y., Ito K. 1987; Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli. EMBO J 6:3465–3470
    [Google Scholar]
  2. Akiyama Y., Ito K. 2000; Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB. EMBO J 19:3888–3895 [CrossRef]
    [Google Scholar]
  3. Akiyama Y., Ito K. 2003; Reconstitution of membrane proteolysis by FtsH. J Biol Chem 278:18146–18153 [CrossRef]
    [Google Scholar]
  4. Akiyama Y., Ogura T., Ito K. 1994; Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J Biol Chem 269:5218–5224
    [Google Scholar]
  5. Akiyama Y., Yoshihisa T., Ito K. 1995; FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J Biol Chem 270:23485–23490 [CrossRef]
    [Google Scholar]
  6. Akiyama Y., Kihara A., Tokuda H., Ito K. 1996a; FtsH protease is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J Biol Chem 271:31196–31201 [CrossRef]
    [Google Scholar]
  7. Akiyama Y., Kihara A., Ito K. 1996b; Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease inEscherichia coli. FEBS Lett 399:26–28 [CrossRef]
    [Google Scholar]
  8. Anilkumar G., Chauhan M. M., Ajitkumar P. 1998; Cloning and expression of the gene coding for FtsH protease from Mycobacterium tuberculosis H37Rv. Gene 214:7–11 [CrossRef]
    [Google Scholar]
  9. Beyer A. 1997; Sequence analysis of the AAA protein family. Protein Sci 6:2043–2058
    [Google Scholar]
  10. Brundage L., Fimmel C. J., Mizushima S., Wickner W. 1990; SecY, SecE, and band 1 form the membrane-embedded domain of Escherichia coli preprotein translocase. J Biol Chem 267:4166–4170
    [Google Scholar]
  11. Caldas T., Binet E., Bouloc P., Costa A., Desgres J., Richarme G. 2000; The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23S ribosomal RNA methyltransferase. J Biol Chem 275:16414–16419 [CrossRef]
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J. & 39 other authors; 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  13. Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A. 1997; Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the Dense Alignment Surface method. Protein Eng 10:673–676 [CrossRef]
    [Google Scholar]
  14. Cutting S., Anderson M., Lysenko E., Page A., Tomoyasu T., Tatematsu K., Tatsuta T., Kroos L., Ogura T. 1997; SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J Bacteriol 179:5534–5542
    [Google Scholar]
  15. Deuerling E., Paeslack B., Schumann W. 1995; The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. J Bacteriol 177:4105–4112
    [Google Scholar]
  16. Deuerling E., Mogk A., Richter C., Purucker M., Schumann W. 1997; The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation, and secretion. Mol Microbiol 23:921–933 [CrossRef]
    [Google Scholar]
  17. Fernandes N. D., Wu Q. L., Kong D., Puyang X., Garg S., Husson R. N. 1999; A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol 181:4266–4274
    [Google Scholar]
  18. Fischer B., Rummel G., Aldridge P., Jenal U. 2002; The FtsH protease is involved in development, stress response, and heat shock control in Caulobacter crescentus. Mol Microbiol 44:461–478 [CrossRef]
    [Google Scholar]
  19. Gamer J., Bujard H., Bukau B. 1992; Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69:833–842 [CrossRef]
    [Google Scholar]
  20. Ge Z., Taylor D. E. 1996; Sequencing, expression, and genetic characterization of the Helicobacter pylori ftsH gene encoding a protein homologous to members of a novel putative ATPase family. J Bacteriol 178:6151–6157
    [Google Scholar]
  21. Goff S. A., Goldberg A. L. 1985; Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41:587–595 [CrossRef]
    [Google Scholar]
  22. Guelin E., Rep M., Grivell L. A. 1994; Sequence of the AFG3 gene encoding a new member of the FtsH/Yme1/Tma subfamily of the AAA-protein family. Yeast 10:1389–1394 [CrossRef]
    [Google Scholar]
  23. Herman C., Ogura T., Tomoyasu T., Hiraga S., Akiyama Y., Ito K., Thomas R., D'Ari R., Bouloc P. 1993; Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc Natl Acad Sci U S A 90:10861–10865 [CrossRef]
    [Google Scholar]
  24. Herman C., Thevenet D., D'Ari R., Bouloc P. 1995; Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 92:3516–3520 [CrossRef]
    [Google Scholar]
  25. Herman C., Thevenet D., D'Ari R., Bouloc P. 1997; The HflB protease of Escherichia coli degrades its inhibitor lambda cIII. J Bacteriol 179:358–363
    [Google Scholar]
  26. Ito K. 1992; SecY and integral membrane components of the Escherichia coli protein translocation system. Mol Microbiol 6:2423–2428
    [Google Scholar]
  27. Ito K., Akiyama Y., Yura T., Shiba K. 1986; Diverse effects of theMalE–LacZ hybrid protein on Escherichia coli cell physiology. J Bacteriol 167:201–204
    [Google Scholar]
  28. Itoh R., Takano H., Ohta N., Miyagishima S.-Y., Kuroiwa H., Kuroiwa T. 1999; Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga Cyanidioschyzon merolae. Plant Mol Biol 41:321–337 [CrossRef]
    [Google Scholar]
  29. Jayasekera M. M., Foltin S. K., Olson E. R., Holler T. P. 2000; Escherichia coli requires the protease activity of FtsH for growth. Arch Biochem Biophys 380:103–107 [CrossRef]
    [Google Scholar]
  30. Kanemori M., Nishihara K., Yanagi H., Yura T. 1997; Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 179:7219–7225
    [Google Scholar]
  31. Karata K., Inagawa T., Wilkinson A. J., Tatsuta T., Ogura T. 1999; Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH. J Biol Chem 274:26225–26232 [CrossRef]
    [Google Scholar]
  32. Karata K., Verma C. S., Wilkinson A. J., Ogura T. 2001; Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Mol Microbiol 39:890–903 [CrossRef]
    [Google Scholar]
  33. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [CrossRef]
    [Google Scholar]
  34. Kihara A., Akiyama Y., Ito K. 1995; FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc Natl Acad Sci U S A 92:4532–4536 [CrossRef]
    [Google Scholar]
  35. Kihara A., Akiyama Y., Ito K. 1999; Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J 18:2970–2981 [CrossRef]
    [Google Scholar]
  36. Kunst F., Ogasawara N., Moszer I. & 148 other authors; 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  37. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  38. Lindahl M., Tabak S., Cseke L., Pichersky E., Andersson B., Adam Z. 1996; Identification, characterization, and molecular cloning of a homologue of the bacterial FtsH protease in chloroplasts of higher plants. J Biol Chem 271:29329–29334 [CrossRef]
    [Google Scholar]
  39. Lysenko E., Ogura T., Cutting S. M. 1997; Characterization of the ftsH gene of Bacillus subtilis. Microbiology 143:971–978 [CrossRef]
    [Google Scholar]
  40. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321 [CrossRef]
    [Google Scholar]
  41. Miroux D., Walker J. E. 1996; Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298 [CrossRef]
    [Google Scholar]
  42. Nilsson D., Lauridsen A. A., Tomoyasu T., Ogura T. 1994; A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essentialEscherichia coli ftsH gene product. Microbiology 140:2601–2610 [CrossRef]
    [Google Scholar]
  43. Ogura T., Wilkinson A. J. 2001; AAA+ superfamily ATPases: common stucture – diverse function. Genes Cells 6:575–597 [CrossRef]
    [Google Scholar]
  44. Ogura T., Tomoyasu T., Yuki T., Morimura S., Begg K. J., Donachie W. D., Mori H., Niki H., Hiraga S. 1991; Structure and function of the ftsH gene in Escherichia coli. Res Microbiol 142:279–282 [CrossRef]
    [Google Scholar]
  45. Ogura T., Inoue K., Tatsuta T.10 other authors 1999; Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31:833–844 [CrossRef]
    [Google Scholar]
  46. Rao A. R., Varshney U. 2001; Specific interaction between the ribosome recycling factor and the elongation factor G from Mycobacterium tuberculosis mediates peptidyl-tRNA release and ribosome recycling in Escherichia coli. EMBO J 20:2977–2986 [CrossRef]
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  48. Shotland Y., Koby S., Teff D.8 other authors 1997; Proteolysis of the phage CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol Microbiol 24:1303–1310 [CrossRef]
    [Google Scholar]
  49. Taura T., Baba T., Akiyama Y., Ito K. 1993; Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J Bacteriol 175:7771–7775
    [Google Scholar]
  50. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  51. Tomoyasu T., Yuki T., Morimura S., Mori H., Yamanaka K., Niki H., Hiraga S., Ogura T. 1993a; The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol 175:1344–1351
    [Google Scholar]
  52. Tomoyasu T., Yamanaka K., Murata K., Suzaki T., Bouloc P., Kato A., Niki H., Hiraga S., Ogura T. 1993b; Topology and subcellular localization of FtsH protein in Escherichia coli. J Bacteriol 175:1352–1357
    [Google Scholar]
  53. Tomoyasu T., Gamer J., Bukau B. & 9 other authors; 1995; Escherichia coli FtsH is a membrane-bound, ATP-dependent protease, which degrades the heat-shock transcription factor σ32. EMBO J 14:2551–2560
    [Google Scholar]
  54. Wykoff D. D., Grossman A. R., Weeks D. P., Usuda H., Shimogawara K. 1999; Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci U S A 96:15336–15341 [CrossRef]
    [Google Scholar]
  55. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  56. Zellmeier S., Zuber U., Schumann W., Wiegert T. 2003; The absence of FtsH metalloprotease activity causes overexpression of the σW-controlled pbpE gene, resulting in filamentous growth of Bacillus subtilis. J Bacteriol 185:973–982 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27090-0
Loading
/content/journal/micro/10.1099/mic.0.27090-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error