1887

Abstract

can bind to saliva-coated tooth surfaces. However, the nature of the domains of salivary protein that interact with remains unclear. The ability of individual proteins in human submandibular-sublingual saliva (HSMSL) to bind cells was examined by dot blot assay; statherin displayed the strongest binding activity. Statherin binding sites were determined based on binding of I-labelled to statherin-coated hydroxyapatite (sHAP) beads via inhibition assays using synthetic analogous peptide fragments of whole statherin. Analogous peptides corresponding to residues 19–26 and 32–39 of statherin inhibited binding by 77 % and 68 %, respectively. Synthetic peptides were also prepared by serial deletions of individual residues from N- and C-termini of the peptides GPYQPVPE (aa 19–26) and QPYQPQYQ (aa 32–39). The inhibitory effects of peptides YQPVPE (aa 21–26) and PYQPQYQ (aa 33–39) were very similar to those of GPYQPVPE and QPYQPQYQ, respectively. However, additional deletion of residues resulted in significant reduction of the inhibitory effect. Alanine-scan analysis of YQPVPE revealed that all tested peptides retained inhibitory activity; only YPVPE exhibited significantly decreased inhibitory activity. These findings suggest that YQPVPE and PYQPQYQ may represent the minimal active segments of statherin for binding to ; moreover, Gln may be a key amino acid in the active segment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27107-0
2004-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502373.html?itemId=/content/journal/micro/10.1099/mic.0.27107-0&mimeType=html&fmt=ahah

References

  1. Aimoto S. 1989; Chemical synthesis of peptide and protein, present and perspective. Seikagaku 61:300–303
    [Google Scholar]
  2. Amano A., Sojar H. T., Lee J.-Y., Sharma A., Levine M. J., Genco R. J. 1994; Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis. Infect Immun 62:3372–3380
    [Google Scholar]
  3. Amano A., Kataoka K., Raj P. A., Genco R. J., Shizukuishi S. 1996a; Binding sites of salivary statherin for Porphyromonas gingivalis recombinant fimbrillin. Infect Immun 64:4249–4254
    [Google Scholar]
  4. Amano A., Sharma A., Lee J.-Y., Sojar H. T., Raj P. A., Genco R. J. 1996b; Structural domains of Porphyromonas gingivalis recombinant fimbrillin that mediate binding to salivary proline-rich protein and statherin. Infect Immun 64:1631–1637
    [Google Scholar]
  5. Bradshaw D. J., Marsh P. D., Watson G. K., Allison C. 1998; Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun 66:4729–4732
    [Google Scholar]
  6. Dehazya P., Coles R. S. Jr 1980; Agglutination of human erythrocytes by Fusobacterium nucleatum; factors influencing hemagglutination and some characteristics of the agglutinin. J Bacteriol 143:205–211
    [Google Scholar]
  7. Falkler W. A. Jr, Burger B. W. 1981; Microbial surface interactions; reduction of the hemagglutination activity of the oral bacterium Fusobacterium nucleatum by absorption with Streptococcus and Bacteroides. Arch Oral Biol 26:1015–1025 [CrossRef]
    [Google Scholar]
  8. Falkler W. A. Jr, Smoot C. N., Mongiello J. R. 1982; Attachment of cell fragments of Fusobacterium nucleatum to oral epithelial cells, gingival fibroblasts and white blood cells. Arch Oral Biol 27:553–559 [CrossRef]
    [Google Scholar]
  9. Gibbons R. J., Hay D. I. 1988; Human salivary acidic proline-rich proteins and statherin promote attachment of Actinomyces viscosus LY7 to apatitic surfaces. Infect Immun 56:439–445
    [Google Scholar]
  10. Gibbons R. J., Hay D. I., Childs W. C. III., Davis G. 1990; Role of cryptic receptors (Cryptitopes) in bacterial adhesion to oral surfaces. Arch Oral Biol 35:107S–114S [CrossRef]
    [Google Scholar]
  11. Gibbons R. J., Hay D. I., Schlesinger D. H. 1991; Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun 59:2948–2954
    [Google Scholar]
  12. Han Y. W., Shi W., Huang G. T. J., Haake S. K., Park N. H., Kuramitsu H., Genco R. J. 2000; Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68:3140–3146 [CrossRef]
    [Google Scholar]
  13. Hay D. I., Moreno E. C. 1989; Statherin and the acidic proline-rich proteins. In Human Saliva: Clinical Chemistry and Microbiology pp. 131–150Edited by Tenovuo J. Boca Raton, FL: CRC Press;
    [Google Scholar]
  14. Johnsson M., Levine M. J., Nancollas G. H. 1993; Hydroxyapatite binding domains in salivary proteins. Crit Rev Oral Biol Med 4:371–378
    [Google Scholar]
  15. Kataoka K., Amano A., Kuboniwa M., Horie H., Nagata H., Shizukuishi S. 1997; Active sites of salivary proline-rich protein for binding to Porphyromonas gingivalis fimbriae. Infect Immun 65:3159–3164
    [Google Scholar]
  16. Kataoka K., Amano A., Kawabata S., Nagata H., Hamada S., Shizukuishi S. 1999; Secretion of functional salivary peptide by Streptococcus gordonii which inhibits fimbria-mediated adhesion of Porphyromonas gingivalis. Infect Immun 67:3780–3785
    [Google Scholar]
  17. Kaufman J., DiRienzo J. M. 1988; Evidence for the existence of two classes of corncob (coaggregation) receptor in Fusobacterium nucleatum. Oral Microbiol Immunol 3:145–152 [CrossRef]
    [Google Scholar]
  18. Kolenbrander P. E., Andersen R. N. 1989; Inhibition of coaggregation between Fusobacterium nucleatumand Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect Immun 57:3204–3209
    [Google Scholar]
  19. Kolenbrander P. E., London J. 1993; Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252
    [Google Scholar]
  20. Kuboniwa M., Amano A., Shizukuishi S. 1998; Hemoglobin-binding protein purified from Porphyromonas gingivalis is identical to lysine-specific cysteine proteinase Lys-gingipain. Biochem Biophys Res Commun 249:38–43 [CrossRef]
    [Google Scholar]
  21. Lee J. Y., Sojar H. T., Bedi G. S., Genco R. J. 1992; Synthetic peptides analogous to the fimbrillin sequence inhibit adherence of Porphyromonas gingivalis. Infect Immun 60:1662–1670
    [Google Scholar]
  22. Long J. R., Shaw J. W., Stayton S. P., Drobny P. G. 2001; Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry 40:15451–15455 [CrossRef]
    [Google Scholar]
  23. Murray P. A., Kern D. G., Winkler J. R. 1988; Identification of a galactose-binding lectin on Fusobacterium nucleatum FN-2. Infect Immun 56:1314–1319
    [Google Scholar]
  24. Niemi D. L., Johansson I. 2004; Salivary statherin peptide-binding epitopes of commensal and potentially infectious Actinomyces spp. delineated by a hybrid peptide construct. Infect Immun 72:782–787 [CrossRef]
    [Google Scholar]
  25. Ramasubbu N., Reddy M. S., Bergey E. J., Haraszthy G. G., Soni S. D., Levine M. J. 1991; Large-scale purification and characterization of the major phosphoproteins and mucins of human submandibular-sublingual saliva. Biochem J 280:341–352
    [Google Scholar]
  26. Ramasubbu N., Thomas L. M., Bhandray K. K., Levine M. J. 1993; Structural characteristics of human salivary statherin: a model for boundary lubrication at the enamel surface. Crit Rev Oral Biol Med 4:363–370
    [Google Scholar]
  27. Scannapieco F. A. 1994; Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5:203–248
    [Google Scholar]
  28. Strömberg N., Borén T., Carlén A., Olsson J. 1992; Salivary receptors for GalNAcβ-sensitive adherence of Actinomyces spp: evidence for heterogeneous GalNAcβ and proline-rich protein receptor properties. Infect Immun 60:3278–3286
    [Google Scholar]
  29. Xie H., Gibbons R. J., Hay D. I. 1991; Adhesive properties of strains of Fusobacterium nucleatum of the subspecies nucleatum, vincentii and polymorphum. Oral Microbiol Immunol 6:257–263 [CrossRef]
    [Google Scholar]
  30. Yao Y., Grogan J., Zehnder M., Lendenmann U., Nam B., Wu Z., Costello C. E., Oppenheim F. G. 2001; Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch Oral Biol 46:293–303 [CrossRef]
    [Google Scholar]
  31. Yao Y., Berg E. A., Costello C. E., Troxler R. F., Oppenheim F. G. 2003; Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem 278:5300–5308 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27107-0
Loading
/content/journal/micro/10.1099/mic.0.27107-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error