1887

Abstract

During phosphate starvation, regulates genes in the PhoP regulon to reduce the cell's requirement for this essential substrate and to facilitate the recovery of inorganic phosphate from organic sources such as teichoic and nucleic acids. Among the proteins that are highly induced under these conditions is PstS, the phosphate-binding lipoprotein component of a high-affinity ABC-type phosphate transporter. PstS is encoded by the first gene in the operon, the other four members of which encode the integral membrane and cytoplasmic components of the transporter. The transcription of the operon was analysed using a combination of methods, including transcriptional reporter gene technology, Northern blotting and DNA arrays. It is shown that the primary transcript of the operon is processed differentially to maintain higher concentrations of PstS relative to other components of the transporter. The comparative studies have revealed limitations in the use of reporter gene technology for analysing the transcription of operons in which the messenger RNA transcript is differentially processed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27126-0
2004-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502619.html?itemId=/content/journal/micro/10.1099/mic.0.27126-0&mimeType=html&fmt=ahah

References

  1. Aguena M., Yagil E., Spira B. 2002; Transcriptional analysis of the pst operon of Escherichia coli. Mol Genet Genomics 268:518–524 [CrossRef]
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  3. Antelmann H., Scharf C., Hecker M. 2000; Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol 182:4478–4490 [CrossRef]
    [Google Scholar]
  4. Arraiano C. M., Yancey S. D., Kushner S. R. 1988; Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J Bacteriol 170:4625–4633
    [Google Scholar]
  5. Atalla A., Schumann W. 2003; The pst operon of Bacillus subtilis is specifically induced by alkali stress. J Bacteriol 185:5019–5022 [CrossRef]
    [Google Scholar]
  6. Bachellier S., Gilson E., Hofnung M., Hill C. W. 1996; Repeated sequences. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 2012–2040 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Belasco J. G., Higgins C. F. 1988; Mechanisms of mRNA decay in bacteria: a perspective. Gene 72:15–23 [CrossRef]
    [Google Scholar]
  8. Boos W., Lucht J. M. 1996; Periplasmic binding protein-dependent ABC transporters. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 1175–1235 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Bron S. 1990; Plasmids. In Molecular Biological Methods for Bacillus pp. 75–174 Edited by Harwood C. R., Cutting S. M. Chichester, UK: Wiley;
    [Google Scholar]
  10. Chan F. Y., Torriani A. 1996; PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J Bacteriol 178:3974–3977
    [Google Scholar]
  11. Condon C. 2003; RNA processing and degradation in Bacillus subtilis. Microbiol Mol Biol Rev 67:157–174 [CrossRef]
    [Google Scholar]
  12. Condon C., Putzer H., Luo D., Grunberg-Manago M. 1997; Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent inEscherichia coli. J Mol Biol 268:235–242 [CrossRef]
    [Google Scholar]
  13. DiMari J. F., Bechhofer D. H. 1993; Initiation of mRNA decay in Bacillus subtilis. Mol Microbiol 7:705–717 [CrossRef]
    [Google Scholar]
  14. Eder S., Liu W., Hulett F. M. 1999; Mutational analysis of the phoD promoter in Bacillus subtilis: implications for PhoP binding and promoter activation of Pho regulon promoters. J Bacteriol 181:2017–2025
    [Google Scholar]
  15. Eymann C., Mach H., Harwood C. R., Hecker M. 1996; Phosphate-starvation-inducible proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology 142:3163–3170 [CrossRef]
    [Google Scholar]
  16. Eymann C., Homuth G., Scharf C., Hecker M. 2002; Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184:2500–2520 [CrossRef]
    [Google Scholar]
  17. Hambraeus G., von Wachenfeldt C., Hederstedt L. 2003; Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Genet Genomics 269:706–714 [CrossRef]
    [Google Scholar]
  18. Hardham J. M., Stamm L. V., Porcella S. F. & 7 other authors; 1997; Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog. Gene 197:47–64 [CrossRef]
    [Google Scholar]
  19. Harris R. M., Webb D. C., Howitt S. M., Cox G. B. 2001; Characterization of PitA and PitB from Escherichia coli. J Bacteriol 183:5008–5014 [CrossRef]
    [Google Scholar]
  20. Harwood C. R., Wipat A., Prágai Z. 2002; Functional analysis of the Bacillus subtilis genome. Methods Microbiol 33:337–367
    [Google Scholar]
  21. Hecker M., Völker U. 1998; Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol Microbiol 29:1129–1136 [CrossRef]
    [Google Scholar]
  22. Higgins C. F. 1992; ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113 [CrossRef]
    [Google Scholar]
  23. Higgins C. F., McLaren R. S., Newbury S. F. 1988; Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 72:3–14 [CrossRef]
    [Google Scholar]
  24. Higgins C. F., Peltz S. W., Jacobson A. 1992; Turnover of mRNA in prokaryotes and lower eukaryotes. Curr Opin Genet Dev 2:739–747 [CrossRef]
    [Google Scholar]
  25. Homuth G., Masuda S., Mogk A., Kobayashi Y., Schumann W. 1997; The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179:1153–1164
    [Google Scholar]
  26. Homuth G., Mogk A., Schumann W. 1999; Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol Microbiol 32:1183–1197 [CrossRef]
    [Google Scholar]
  27. Horazdovsky B. F., Hogg R. W. 1987; High-affinity l-arabinose transport operon. Gene product expression and mRNAs. J Mol Biol 197:27–35 [CrossRef]
    [Google Scholar]
  28. Hulett F. M. 1996; The signal-transduction network for Pho regulation in Bacillus subtilis. Mol Microbiol 19:933–939 [CrossRef]
    [Google Scholar]
  29. Hulett F. M. 2002; The Pho regulon. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp. 193–201 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Hulett F. M., Lee J., Shi L., Sun G., Chesnut R., Sharkova E., Duggan M. F., Kapp N. 1994; Sequential action of two-component genetic switches regulates the Pho regulon in Bacillus subtilis. J Bacteriol 176:1348–1358
    [Google Scholar]
  31. Igo M., Lampe M., Ray C., Schafer W., Moran C. P., Losick R. 1987; Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J Bacteriol 169:3464–3469
    [Google Scholar]
  32. Jürgen B., Schweder T., Hecker M. 1998; The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site. Mol Gen Genet 258:538–545 [CrossRef]
    [Google Scholar]
  33. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stulke J. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422 [CrossRef]
    [Google Scholar]
  34. Moszer I. 1998; The complete genome of Bacillus subtilis, from sequence annotation to data management and analysis. FEBS Lett 430:28–36 [CrossRef]
    [Google Scholar]
  35. Muda M., Rao N. N., Torriani A. 1992; Role of PhoU in phosphate transport and alkaline phosphatase regulation. J Bacteriol 174:8057–8064
    [Google Scholar]
  36. Newbury S. F., Smith N. H., Higgins C. F. 1987a; Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51:1131–1143 [CrossRef]
    [Google Scholar]
  37. Newbury S. F., Smith N. H., Robinson E. C., Hiles I. D., Higgins C. F. 1987b; Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310 [CrossRef]
    [Google Scholar]
  38. Prágai Z., Harwood C. R. 2000a; Screening for mutants affected in their response to phosphate. In Functional Analysis of Bacterial Genes: a Practical Manual pp . 245–249 Edited by Schumann W., Ehrlich S. D., Ogasawara N. Chichester: Wiley;
    [Google Scholar]
  39. Prágai Z., Harwood C. R. 2000b; YsxC, a putative GTP binding protein essential for the growth of Bacillus subtilis 168. J Bacteriol 182:6819–6823 [CrossRef]
    [Google Scholar]
  40. Prágai Z., Harwood C. R. 2002; Regulatory interactions between the Pho and σB-dependent general stress regulons of Bacillus subtilis. Microbiology 148:1593–1602
    [Google Scholar]
  41. Prágai Z., Eschevins C., Bron S., Harwood C. R. 2001; Bacillus subtilis NhaC, an Na+/H+ antiporter, influences expression of the phoPR operon and production of alkaline phosphatases. J Bacteriol 183:2505–2515 [CrossRef]
    [Google Scholar]
  42. Prágai Z., Allenby N. E., O'Connor N., Dubrac S., Rapoport G., Msadek T., Harwood C. R. 2004; Transcriptional regulation of the phoPR operon in Bacillus subtilis. J Bacteriol 186:1182–1190 [CrossRef]
    [Google Scholar]
  43. Qi Y., Hulett F. M. 1998; PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197 [CrossRef]
    [Google Scholar]
  44. Qi Y., Kobayashi Y., Hulett F. M. 1997; The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the Pho regulon. J Bacteriol 179:2534–2539
    [Google Scholar]
  45. Sharp J. S., Bechhofer D. H. 2003; Effect of translational signals on mRNA decay in Bacillus subtilis. J Bacteriol 185:5372–5379 [CrossRef]
    [Google Scholar]
  46. Steed P. M., Wanner B. L. 1993; Use of the rep technique for allele replacement to construct mutants with deletions in the pstSCAB operon: evidence for the role of the PhoU protein in phosphate regulation. J Bacteriol 175:6797–6809
    [Google Scholar]
  47. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nat New Biol 246:40–41 [CrossRef]
    [Google Scholar]
  48. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104 [CrossRef]
    [Google Scholar]
  49. Vázquez-Cruz C., Olmedo-Alvarez G. 1997; Mechanism of decay of the cry1Aa mRNA in Bacillus subtilis. J Bacteriol 179:6341–6348
    [Google Scholar]
  50. Webb D. C., Rosenberg H., Cox G. B. 1992; Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J Biol Chem 267:24661–24668
    [Google Scholar]
  51. Zuker M. 1989; Computer prediction of RNA structure. Methods Enzymol 180:262–288
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27126-0
Loading
/content/journal/micro/10.1099/mic.0.27126-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error