1887

Abstract

CluA is a 136 kDa surface-bound protein encoded by the chromosomally located sex factor of MG1363 and is associated with cell aggregation linked to high-frequency transfer of the sex factor. To further investigate the involvement of CluA in these phenomena, the gene was cloned on a plasmid, downstream from the lactococcal promoter. In a sex-factor-negative MG1363 derivative, nisin-controlled CluA expression resulted in aggregation, despite the absence of the other genes of the sex factor. Therefore, CluA is the only sex factor component responsible for aggregation. The direct involvement of CluA in the establishment of cell-to-cell contact for aggregate formation was observed by electron microscopy using immunogold-labelled CluA antibodies. Inactivation of in an MG1363 background led to a dramatic decrease in sex factor conjugation frequency compared to the parental strain. Increasing levels of CluA expressed in the -inactivated donor strain facilitated a gradual restoration of conjugation frequency, reaching that of the parental strain. In conclusion, CluA is essential for efficient sex factor transfer in conjugation of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27149-0
2004-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502503.html?itemId=/content/journal/micro/10.1099/mic.0.27149-0&mimeType=html&fmt=ahah

References

  1. Anderson D. G., McKay L. L. 1984; Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high frequency conjugal transfer in Streptococcus lactis ML3. J Bacteriol 158:954–962
    [Google Scholar]
  2. Andrup L., Damgaard J., Wassermann K. 1993; Mobilization of small plasmids in Bacillus thuringiensis subsp.israelensis is accompanied by specific aggregation. J Bacteriol 175:6530–6536
    [Google Scholar]
  3. Bolken T. C., Franke C. A., Jones K. F., Zeller G. O., Jones C. H., Dutton E. K., Hruby D. E. 2001; Inactivation of the srtA gene inStreptococcus gordonii inhibits cell wall anchoring of surface proteins and decreases in vitro and in vivo adhesion. Infect Immun 69:75–80 [CrossRef]
    [Google Scholar]
  4. Clewell D. B. 1993; Sex pheromones and the plasmid-encoded mating response in Enterococcus faecalis. In Bacterial Conjugation pp 349–367 New York: Plenum;
    [Google Scholar]
  5. Clewell D. B., Weaver K. E. 1989; Sex pheromones and plasmid transfer in Enterococcus faecalis: a review. Plasmid 21:175–184 [CrossRef]
    [Google Scholar]
  6. Cravchik A., Matus A. 1993; A novel strategy for the immunological tagging of cDNA constructs. Gene 137:139–143 [CrossRef]
    [Google Scholar]
  7. De Ruyter P. G., Kuipers O. P., de Vos W. M. 1996; Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667
    [Google Scholar]
  8. Dodd H. M., Horn N., Chan W. C., Giffard C. J., Bycroft B. W., Roberts G. C., Gasson M. J. 1996; Molecular analysis of the regulation of nisin immunity. Microbiology 142:2385–2392 [CrossRef]
    [Google Scholar]
  9. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of Esherichia coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  10. Eaton T., Shearman C., Gasson M. 1993a; Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp.lactis. J Gen Microbiol 139:3253–3263 [CrossRef]
    [Google Scholar]
  11. Eaton T., Shearman C., Gasson M. 1993b; The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp.lactis lactose genes. J Gen Microbiol 139:1495–1501 [CrossRef]
    [Google Scholar]
  12. Fischetti V. A., Pancholi V., Schneewind O. 1990; Conservation of a hexapeptide sequence in the anchor region surface proteins of Gram-positive cocci. Mol Microbiol 4:1603–1605 [CrossRef]
    [Google Scholar]
  13. Galli D., Wirth R. 1992; Transcriptional control of sex-pheromone-inducible genes on plasmid pAD1 of Enterococcus faecalis and sequence analysis of a third structural gene for (pPD1-encoded) aggregation substance. Mol Microbiol 6:1267–1308
    [Google Scholar]
  14. Galli D., Lottspeich F., Wirth R. 1990; Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol 4:895–904 [CrossRef]
    [Google Scholar]
  15. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  16. Gasson M. J., Davies F. L. 1980; High-frequency conjugation associated with Streptococcus lactis donor cell aggregation. J Bacteriol 143:1260–1264
    [Google Scholar]
  17. Gasson M. J., Swindell S., Maeda S., Dodd H. M. 1992; Molecular rearrangement of lactose plasmid DNA associated with high-frequency transfer and cell aggregation in Lactococcus lactis 712. Mol Microbiol 6:3213–3223 [CrossRef]
    [Google Scholar]
  18. Gibson T. J. 1984 Studies on the Epstein-Barr virus genome PhD thesis, Cambridge University; Cambridge, UK:
  19. Godon J. J., Jury K., Shearman C. A., Gasson M. J. 1994; The Lactococcus lactis sex-factor aggregation gene cluA. Mol Microbiol 12:655–663 [CrossRef]
    [Google Scholar]
  20. Hirt H., Erlandsen S. L., Dunny G. M. 2000; Heterologous inducible expression of Enterococcus faecalis pCF10 aggregation substance asc10 in Lactococcus lactis and Streptococcus gordonii contributes to cell hydrophobicity and adhesion to fibrin. J Bacteriol 182:2299–2306 [CrossRef]
    [Google Scholar]
  21. Holo H., Nes I. F. 1995; Transformation of Lactococcus by electroporation. Methods Mol Biol 47:195–199
    [Google Scholar]
  22. Jenkinson H. F. 1994; Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett 121:133–140 [CrossRef]
    [Google Scholar]
  23. Jenkinson H. F., Demuth D. R. 1997; Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol Microbiol 23:183–190 [CrossRef]
    [Google Scholar]
  24. Jensen G. B., Wilcks A., Petersen S. S., Damgaard J., Baum J. A., Andrup L. 1995; The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J Bacteriol 177:2914–2917
    [Google Scholar]
  25. Jett B. D., Atkuri R. V., Gilmore M. S. 1998; Enterococcus faecalis localization in experimental endophtalmitis: role of plasmid-encoded aggregation substance. Infect Immun 66:843–848
    [Google Scholar]
  26. Kao S. M., Olmsted S. B., Viksnins A. S., Gallo J. C., Dunny G. M. 1991; Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins, involved in pheromone-inducible conjugation in Enterococcus faecalis. J Bacteriol 173:7650–7664
    [Google Scholar]
  27. Karakas Sen A., Narbad A., Horn N., Dodd H. M., Parr A. J., Colquhoun I., Gasson M. J. 1999; Post-translational modification of nisin. The involvement of NisB in the dehydration process. Eur J Biochem 261:524–532 [CrossRef]
    [Google Scholar]
  28. Kolenbrander P. E., London J. 1993; Adhere today, here tomorrow: oral bacteria adherence. J Bacteriol 175:3247–3252
    [Google Scholar]
  29. Kondo J. K., McKay L. L. 1982; Transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl Environ Microbiol 43:1213–1215
    [Google Scholar]
  30. Kreft B., Marre R., Schramm U., Wirth R. 1992; Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect Immun 60:25–30
    [Google Scholar]
  31. Leenhouts K., Buist G., Bolhuis A., ten Berge A., Kiel J., Mierau I., Dabrowska M. 1996; A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217–224 [CrossRef]
    [Google Scholar]
  32. Lewington J., Greenaway S. P., Spillane G. J. 1987; Rapid small scale preparation of bacterial genomic DNA, suitable for cloning and hybridization analysis. Lett Appl Microbiol 5:51–53 [CrossRef]
    [Google Scholar]
  33. Link A. J., Phillips D., Church G. M. 1997; Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237
    [Google Scholar]
  34. MacCormick C. A., Griffin H. G., Gasson M. J. 1995; Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol Lett 127:105–109 [CrossRef]
    [Google Scholar]
  35. Navarre W. W., Schneewind O. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  36. Olmsted S. B., Kao S., van Putte L. J., Gallo J. C., Dunny G. M. 1991; Role of the pheromone-inducible surface protein Asc10 in mating aggregate formation and conjugal transfer of the Enterococcus faecalis plasmid pCF10. J Bacteriol 173:7665–7672
    [Google Scholar]
  37. Osaki M., Takamatsu D., Shimoji Y., Sekizaki T. 2002; Characterisation of Streptococcus suis genes encoding proteins homologous to sortase of Gram-positive bacteria. J Bacteriol 184:971–982 [CrossRef]
    [Google Scholar]
  38. O'Sullivan D. J., Klaenhammer T. R. 1993; High copy number and low copy number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137:227–231 [CrossRef]
    [Google Scholar]
  39. Rakita R. M., Vanek N. N., Jacques-Palaz K., Mee M., Mariscalco M. M., Dunny G. M. 1999; Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophiles despite phagocytosis and neutrophile activation. Infect Immun 67:6067–6075
    [Google Scholar]
  40. Reniero R., Coconcelli P., Botazzi V., Morelli L. 1992; High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J Gen Microbiol 138:763–768 [CrossRef]
    [Google Scholar]
  41. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  42. Schlievert P. M., Gahr P. J., Assimacopoulos A. P., Dinges M. M., Stoehr J. A., Harmala J. W. 1998; Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun 66:218–223
    [Google Scholar]
  43. Schneewind O., Fowler A., Faull K. F. 1995; Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103–106 [CrossRef]
    [Google Scholar]
  44. Süßmuth S. D., Muscholl-Silberhorn A., Wirth R., Susa M., Marre R., Rozdzinski E. 2000; Aggregation substance promotes adherence, phagocytosis and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immun 68:4900–4906 [CrossRef]
    [Google Scholar]
  45. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  46. Ton-That H., Faull K. F., Schneewind O. 1997; Anchor structure of staphylococcal surface proteins. J Biol Chem 272:22285–22292 [CrossRef]
    [Google Scholar]
  47. van Rooijen R. J., Gasson M. J., de Vos W. M. 1992; Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol 174:2273–2280
    [Google Scholar]
  48. Walsh P. M., McKay L. L. 1981; Recombinant plasmid associated with cell aggregation and high-frequency conjugation of Streptococcus lactis ML3. J Bacteriol 146:937–944
    [Google Scholar]
  49. Waters C. M., Dunny G. M. 2001; Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol 183:5659–5667 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27149-0
Loading
/content/journal/micro/10.1099/mic.0.27149-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error