1887

Abstract

In , the reversible expression of surface antigens, i.e. phase variation, results from changes within repeated simple sequence motifs located in coding or promoter regions of the genes involved in their biosynthesis. The mutation rates of these simple sequences, which have a major influence on the generation of phenotypic diversity, can affect the fitness of the population. The aim of the present study was to investigate the involvement of genetic factors involved ( and ) and not yet analysed ( and ) in the regulation of phase variation frequencies of genes associated with a variety of repeat tracts. The frequency of frameshifts occurring in the polycytidine (polyC) tracts associated with , and and in the tetranucleotide (TAAA) repeat tract associated with was determined by colony immunoblotting or using the gene as a reporter. Inactivation of increased the frequency of phase variation of genes presenting homopolymeric tracts of diverse length. Overexpression of enhanced the instability of the homopolymeric tract associated with . Investigation of the locus in a population of genetically distinct strains revealed that 27 % of strains associated with invasive disease contained the gene. In all strains where a Dam function was absent, the gene had been inserted into the locus. Disruption of and in strains representative of each genotype, i.e. / and / , did not modify phase variation frequencies. In contrast to the effects of certain genes on homopolymeric tracts, none of the genetic factors investigated affected the stability of tetranucleotide repeat tracts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27182-0
2004-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1503001.html?itemId=/content/journal/micro/10.1099/mic.0.27182-0&mimeType=html&fmt=ahah

References

  1. Alexander H. E. 1965; The Haemophilus group. In Bacterial and Mycotic Infections of Man pp. 724–741 Edited by Dabos R. J., Horsch J. G. London: Pitman Medical Publishing;
    [Google Scholar]
  2. Bayliss C. D., van de Ven T., Moxon E. R. 2002; Mutations in polI but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats. EMBO J 21:1465–1476 [CrossRef]
    [Google Scholar]
  3. Bayliss C. D., Sweetman W. A., Moxon E. R. 2004; Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tracts but not dinucleotide repeat-driven pilin phase variation rates. J Bacteriol 186:2928–2935 [CrossRef]
    [Google Scholar]
  4. Black C. G., Fyfe J. A., Davies J. K. 1998; Absence of an SOS-like system in Neisseria gonorrhoeae. Gene 208:61–66 [CrossRef]
    [Google Scholar]
  5. Bucci C., Lavitola A., Salvatore P., Del Giudice L., Massardo D. R., Bruni C. B., Alifano P. 1999; Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 3:435–445 [CrossRef]
    [Google Scholar]
  6. Cantalupo G., Bucci C., Salvatore P., Pagliarulo C., Roberti V., Lavitola A., Bruni C. B., Alifano P. 2001; Evolution and function of the neisserial dam-replacing gene. FEBS Lett 495:178–183 [CrossRef]
    [Google Scholar]
  7. de Bolle X., Bayliss C. D., Field D., van de Ven T., Saunders N. J., Hood D. W., Moxon E. R. 2000; The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35:211–222 [CrossRef]
    [Google Scholar]
  8. de Vries F. P., van der Ende A., van Putten J. P., Dankert J. 1996; Invasion of primary nasopharyngeal epithelial cells by Neisseria meningitidis is controlled by phase variation of multiple surface antigens. Infect Immun 64:2998–3006
    [Google Scholar]
  9. Frosch M., Gorgen I., Boulnois G. J., Timmis K. N., Bitter-Suermann D. 1985; NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B meningococci. Proc Natl Acad Sci U S A 82:1194–1198 [CrossRef]
    [Google Scholar]
  10. Garcia-Del Portillo F., Pucciarelli M. G., Casadesus J. 1999; DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc Natl Acad Sci U S A 96:11578–11583 [CrossRef]
    [Google Scholar]
  11. Hammerschmidt S., Muller A., Sillmann H. 7 other authors 1996; Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol Microbiol 20:1211–1220 [CrossRef]
    [Google Scholar]
  12. Hood D. W., Deadman M. E., Jennings M. P., Bisercic M., Fleischmann R. D., Venter J. C., Moxon E. R. 1996; DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc Natl Acad Sci U S A 93:11121–11125 [CrossRef]
    [Google Scholar]
  13. Jennings M. P., Virji M., Evans D., Foster V., Srikhanta Y. N., Steeghs L., van der Ley P., Moxon E. R. 1998; Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol Microbiol 29:975–984 [CrossRef]
    [Google Scholar]
  14. Jennings M. P., Srikhanta Y. N., Moxon E. R., Kramer M., Poolman J. T., Kuipers B., van der Ley P. 1999; The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145:3013–3021
    [Google Scholar]
  15. Jonsson A. B., Nyberg G., Normark S. 1991; Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J 10:477–488
    [Google Scholar]
  16. Kim S. R., Maenhaut-Michel G., Yamada M., Yamamoto Y., Matsui K., Sofuni T., Nohmi T., Ohmori H. 1997; Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci U S A 94:13792–13797 [CrossRef]
    [Google Scholar]
  17. Lewis L. A., Gipson M., Hartman K., Ownbey T., Vaughn J., Dyer D. W. 1999; Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 32:977–989 [CrossRef]
    [Google Scholar]
  18. Mackinnon F. G., Cox A., Plested J. S. 8 other authors 2002; Identification of a gene (lpt-3) required for the addition of phosphoethanolamine to the lipopolysaccharide inner core of Neisseria meningitidis and its role in mediating susceptibility to bactericidal killing and opsonophagocytosis. Mol Microbiol 43:931–943 [CrossRef]
    [Google Scholar]
  19. Maiden M. C., Bygraves J. A., Feil E. J. 10 other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145 [CrossRef]
    [Google Scholar]
  20. Martin P., van de Ven T., Mouchel N., Jeffries A. C., Hood D. W., Moxon E. R. 2003; Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. Mol Microbiol 50:245–257 [CrossRef]
    [Google Scholar]
  21. Monod M., Denoya C., Dubnau D. 1986; Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol 167:138–147
    [Google Scholar]
  22. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33 [CrossRef]
    [Google Scholar]
  23. Pizza M., Scarlato V., Masignani V. & 33 other authors; 2000; Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820 [CrossRef]
    [Google Scholar]
  24. Plested J. S., Makepeace K., Jennings M. P. 10 other authors 1999; Conservation and accessibility of an inner core lipopolysaccharide epitope of Neisseria meningitidis. Infect Immun 67:5417–5426
    [Google Scholar]
  25. Richardson A. R., Stojiljkovic I. 1999; HmbR, a hemoglobin-binding outer membrane protein of Neisseria meningitidis, undergoes phase variation. J Bacteriol 181:2067–2074
    [Google Scholar]
  26. Richardson A. R., Stojiljkovic I. 2001; Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol Microbiol 40:645–655 [CrossRef]
    [Google Scholar]
  27. Richardson A. R., Yu Z., Popovic T., Stojiljkovic I. 2002; Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci U S A 99:6103–6107 [CrossRef]
    [Google Scholar]
  28. Rolfsmeier M. L., Dixon M. J., Pessoa-Brandao L., Pelletier R., Miret J. J., Lahue R. S. 2001; Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae. Genetics 157:1569–1579
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sarkari J., Pandit N., Moxon E. R., Achtman M. 1994; Variable expression of Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol Microbiol 13:207–217 [CrossRef]
    [Google Scholar]
  31. Saunders N. J., Jeffries A. C., Peden J. F., Hood D. W., Tettelin H., Rappuoli R., Moxon E. R. 2000; Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol 37:207–215 [CrossRef]
    [Google Scholar]
  32. Saunders N. J., Moxon E. R., Gravenor M. B. 2003; Mutation rates: estimating phase variation rates when fitness differences are present and their impact on population structure. Microbiology 149:485–495 [CrossRef]
    [Google Scholar]
  33. Strauss B. S., Sagher D., Acharya S. 1997; Role of proofreading and mismatch repair in maintaining the stability of nucleotide repeats in DNA. Nucleic Acids Res 25:806–813 [CrossRef]
    [Google Scholar]
  34. Tettelin H., Saunders N. J., Heidelberg J. 39 other authors 2000; Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815 [CrossRef]
    [Google Scholar]
  35. Tompkins J. D., Nelson J. L., Hazel J. C., Leugers S. L., Stumpf J. D., Foster P. L. 2003; Error-prone polymerase, DNA polymerase IV, is responsible for transient hypermutation during adaptive mutation in Escherichia coli. J Bacteriol 185:3469–3472 [CrossRef]
    [Google Scholar]
  36. Tran H. T., Keen J. D., Kricker M., Resnick M. A., Gordenin D. A. 1997; Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17:2859–2865
    [Google Scholar]
  37. van der Ende A., Hopman C. T. P., Dankert J. 2000; Multiple mechanisms of phase variation of PorA in Neisseria meningitidis. Infect Immun 68:6685–6690 [CrossRef]
    [Google Scholar]
  38. Wagner J., Etienne H., Janel-Bintz R., Fuchs R. P. 2002; Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity. DNA Repair 1:159–167 [CrossRef]
    [Google Scholar]
  39. Wierdl M., Dominska M., Petes T. D. 1997; Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146:769–779
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27182-0
Loading
/content/journal/micro/10.1099/mic.0.27182-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error