1887

Abstract

Pathogenic mycobacteria survive within phagosomes which are thought to represent a nutrient-restricted environment. Divalent cation transporters of the Nramp family in phagosomes and mycobacteria (Mramp) may compete for metals that are crucial for bacterial survival. The elemental concentrations in phagosomes of macrophages infected with wild-type ( strain H37Rv) and a knockout mutant (Mramp-KO), derived from a clinical isolate isogenic to the strain MT103, were compared. Time points of 1 and 24 h after infection of mouse peritoneal macrophages ( ) were compared in both cases. Increased concentrations of P, Ni and Zn and reduced Cl concentration in Mramp-KO after 1 h of infection were observed, compared to vacuoles. After 24 h of infection, significant differences in the P, Cl and Zn concentrations were still present. The Mramp-KO phagosome showed a significant increase of P, Ca, Mn, Fe and Zn concentrations between 1 and 24 h after infection, while the concentrations of K and Ni decreased. In the vacuole, the Fe concentration showed a similar increase, while the Cl concentration decreased. The fact that the concentration of several divalent cations increased in the Mramp-KO strain suggests that Mramp may have no impact on the import of these divalent cations into the mycobacterium, but may function as a cation efflux pump. The concordant increase of Fe concentrations within , as well as within the Mramp-KO vacuoles, implies that Mramp, in contrast to siderophores, might not be important for the attraction of Fe and its retention in phagosomes of unstimulated macrophages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27213-0
2005-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510323.html?itemId=/content/journal/micro/10.1099/mic.0.27213-0&mimeType=html&fmt=ahah

References

  1. Abel L., Sanchez F. O., Oberti J., Thuc N. V., Hoa L. V., Lap V. D., Skamene E., Lagrange P. H., Schurr E. 1998; Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 177:133–145 [CrossRef]
    [Google Scholar]
  2. Agranoff D. D., Krishna S. 1998; Metal ion homeostasis and intracellular parasitism. Mol Microbiol 28:403–412 [CrossRef]
    [Google Scholar]
  3. Agranoff D., Monahan I. M., Mangan J. A., Butcher P. D., Krishna S. 1999; Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J Exp Med 190:717–724 [CrossRef]
    [Google Scholar]
  4. Awomoyi A. A., Marchant A., Howson J. M., McAdam K. P., Blackwell J. M., Newport M. J. 2002; Interleukin-10, polymorphism in SLC11A1 (formerly NRAMP1), and susceptibility to tuberculosis. J Infect Dis 186:1808–1814 [CrossRef]
    [Google Scholar]
  5. Barton C. H., Biggs T. E., Baker S. T., Bowen H., Atkinson P. G. 1999; Nramp1: a link between intracellular iron transport and innate resistance to intracellular pathogens. J Leukoc Biol 66:757–762
    [Google Scholar]
  6. Bellamy R., Ruwende C., Corrah T., McAdam K. P., Whittle H. C., Hill A. V. 1998; Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338:640–644 [CrossRef]
    [Google Scholar]
  7. Bermudez L. E., Parker A., Goodman J. 1997; Growth within macrophages increases the efficiency of Mycobacterium avium to invade other macrophages by complement receptor independent pathway. Infect Immun 65:1916–1922
    [Google Scholar]
  8. Boechat N., Lagier-Roger B., Petit S., Bordat Y., Rauzier J., Hance A. J., Gicquel B., Reyrat J. M. 2002; Disruption of the gene homologous to mammalian Nramp1 in Mycobacterium tuberculosis does not affect virulence in mice. Infect Immun 70:4124–4131 [CrossRef]
    [Google Scholar]
  9. Bunting K., Cooper J. B., Badasso M. O., Tickle I. J., Newton M., Wood S. P., Zhang Y., Young D. 1998; Engineering a change in metal-ion specificity of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis – X-ray structure analysis of site-directed mutants. Eur J Biochem 251:795–803 [CrossRef]
    [Google Scholar]
  10. Cai Z., Lai B., Yun W., Ilinski P., Legnini D., Maser J., Rodrigues W. 2000; A hard X-ray scanning microprobe for fluorescence imaging and microdiffraction at the advanced photon source. In X-ray Microscopy pp 472–477 Edited by Meyer T. W. W.-Ilse, Attwood D. Melville, NY: American Institute of Physics;
    [Google Scholar]
  11. Cellier M. F., Bergevin I., Boyer E., Richer E. 2001; Polyphyletic origins of bacterial Nramp transporters. Trends Genet 17:365–370 [CrossRef]
    [Google Scholar]
  12. Deretic V., Fratti R. A. 1999; Mycobacterium tuberculosis phagosome. Mol Microbiol 31:1603–1609 [CrossRef]
    [Google Scholar]
  13. De Voss J. J., Rutter K., Schroeder B. G., Su H., Zhu Y., Barry C. E. 2000; The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257 [CrossRef]
    [Google Scholar]
  14. Domenech P., Pym A. S., Cellier M., Barry C. E. 3rd, Cole S. T. 2002; Inactivation of the Mycobacterium tuberculosis Nramp orthologue (mntH) does not affect virulence in a mouse model of tuberculosis. FEMS Microbiol Lett 207:81–86 [CrossRef]
    [Google Scholar]
  15. Escuyer V., Haddad N., Frehel C., Berche P. 1996; Molecular characterization of a surface-exposed superoxide dismutase of Mycobacterium avium . Microb Pathog 20:41–55 [CrossRef]
    [Google Scholar]
  16. Forbes J. R., Gros P. 2001; Divalent-metal transport by NRAMP proteins at the interface of host–pathogen interactions. Trends Microbiol 9:397–403 [CrossRef]
    [Google Scholar]
  17. Frehel C., Canonne-Hergaux F., Gros P., De Chastellier C. 2002; Effect of Nramp1 on bacterial replication and on maturation of Mycobacterium avium -containing phagosomes in bone marrow-derived mouse macrophages. Cell Microbiol 4:541–556 [CrossRef]
    [Google Scholar]
  18. Gomes M. S., Appelberg R. 2002; NRAMP1- or cytokine-induced bacteriostasis of Mycobacterium avium by mouse macrophages is independent of the respiratory burst. Microbiology 148:3155–3160
    [Google Scholar]
  19. Govoni G., Gros P. 1998; Macrophage NRAMP1 and its role in resistance to microbial infections. Inflamm Res 47:277–284 [CrossRef]
    [Google Scholar]
  20. Gruenheid S., Canonne-Hergaux F., Gauthier S., Hackam D. J., Grinstein S., Gros P. 1999; The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 189:831–841 [CrossRef]
    [Google Scholar]
  21. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. 1997; Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488 [CrossRef]
    [Google Scholar]
  22. Hackam D. J., Rotstein O. D., Zhang W., Gruenheid S., Gros P., Grinstein S. 1998; Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med 188:351–364 [CrossRef]
    [Google Scholar]
  23. Henle E. S., Linn S. 1997; Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272:19095–19098 [CrossRef]
    [Google Scholar]
  24. Jenkins R., Gould R. W., Gedcke D. 1995 Quantitative X-ray Spectrometry , 2nd edn. New York: Marcel Dekker;
    [Google Scholar]
  25. Kehres D. G., Zaharik M. L., Finlay B. B., Maguire M. E. 2000; The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100 [CrossRef]
    [Google Scholar]
  26. Kehres D. G., Janakiraman A., Slauch J. M., Maguire M. E. 2002; Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. J Bacteriol 184:3151–3158 [CrossRef]
    [Google Scholar]
  27. Kuhn D. E., Lafuse W. P., Zwilling B. S. 2001; Iron transport into Mycobacterium avium -containing phagosomes from an Nramp1(Gly169)-transfected RAW264.7 macrophage cell line. J Leukoc Biol 69:43–49
    [Google Scholar]
  28. Maser J., Wagner D., Lai B., Cai Z., Legnini D., Moric I., Bermudez L. 2003; Trace metals and their relation to bacterial infections studied by X-ray microscopy. Proceedings of the Seventh International Conference on X-ray Microscopy. J Phys IV 104:283–288
    [Google Scholar]
  29. Mulero V., Searle S., Blackwell J. M., Brock J. H. 2002; Solute carrier 11a1 (Slc11a1; formerly Nramp1) regulates metabolism and release of iron acquired by phagocytic, but not transferrin-receptor-mediated, iron uptake. Biochem J 363:89–94 [CrossRef]
    [Google Scholar]
  30. Picard V., Govoni G., Jabado N., Gros P. 2000; Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool. J Biol Chem 275:35738–35745 [CrossRef]
    [Google Scholar]
  31. Piddington D. L., Fang F. C., Laessig T., Cooper A. M., Orme I. M., Buchmeier N. A. 2001; Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987 [CrossRef]
    [Google Scholar]
  32. Reeve I., Hummel D., Nelson N., Voss J., Hummell D. 2002; Overexpression, purification, and site-directed spin labeling of the Nramp metal transporter from Mycobacterium leprae . Proc Natl Acad Sci U S A 99:8608–8613 [CrossRef]
    [Google Scholar]
  33. Searle S., Bright N. A., Roach T. I., Atkinson P. G., Barton C. H., Meloen R. H., Blackwell J. M. 1998; Localisation of Nramp1 in macrophages: modulation with activation and infection. J Cell Sci 111:2855–2866
    [Google Scholar]
  34. Sonawane N. D., Verkman A. S. 2003; Determinants of [Cl-] in recycling and late endosomes and Golgi complex measured using fluorescent ligands. J Cell Biol 160:1129–1138 [CrossRef]
    [Google Scholar]
  35. Tandy S., Williams M., Leggett A., Lopez-Jimenez M., Dedes M., Ramesh B., Srai S. K., Sharp P. 2000; Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J Biol Chem 275:1023–1029 [CrossRef]
    [Google Scholar]
  36. Thompson A. C., Attwood D. T., Gullikson E. M. 11 other authors 2001 X-Ray Data Booklet , 2nd edn. University of California, Berkeley: Lawrence Berkeley National Laboratory;
    [Google Scholar]
  37. Tokuraku K., Nakagawa H., Kishi F., Kotani S. 1998; Human natural resistance-associated macrophage protein is a new type of microtubule-associated protein. FEBS Lett 428:63–67 [CrossRef]
    [Google Scholar]
  38. Vogt S. 2003; maps: a set of software tools for analysis and visualization of 3D X-ray fluorescence data sets. Proceedings of the Seventh International Conference on X-ray Microscopy. J Phys IV 104:635–638
    [Google Scholar]
  39. Vogt S., Maser J., Jacobsen C. 2003; Data analysis for X-ray fluorescence imaging. Proceedings of the Seventh International Conference on X-ray Microscopy. J Phys IV 104:617–622
    [Google Scholar]
  40. Wagner D., Sangari F. J., Kim S., Petrofsky M., Bermudez L. E. 2002; Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo . J Leukoc Biol 71:80–88
    [Google Scholar]
  41. Wagner D., Maser J., Lai B., Cai Z., Barry C. E. 3rd, Höner zu Bentrup K., Russell D. G., Bermudez L. E. 2005; Elemental analysis of Mycobacterium avium, Mycobacterium tuberculosis and Mycobacterium smegmatis -containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol in press
    [Google Scholar]
  42. Zhong W., Lafuse W. P., Zwilling B. S. 2001; Infection with Mycobacterium avium differentially regulates the expression of iron transport protein mRNA in murine peritoneal macrophages. Infect Immun 69:6618–6624 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27213-0
Loading
/content/journal/micro/10.1099/mic.0.27213-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error