1887

Abstract

Searches in a database (http://genolist.pasteur.fr/CandidaDB/) identified two Individual Protein Files (IPF 15363 and 19968) whose deduced amino acid sequences showed 42 % and 45 % homology with Pir4. The two DNA sequences are alleles of the same gene () but IPF 19968 has a deletion of 117 bases. IPF 19968 encodes a putative polypeptide of 364 aa, which is highly -glycosylated and has an -mannosylated chain, four cysteine residues and seven repeats. Both alleles are expressed under different growth conditions and during wall construction by regenerating protoplasts. The heterozygous mutant cells are elongated, form clumps of several cells and are hypersensitive to drugs that affect cell wall assembly. CaPir1 was labelled with the V5 epitope and found linked to the 1,3--glucan of the wall and also by disulphide bridges when expressed in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27220-0
2004-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503151.html?itemId=/content/journal/micro/10.1099/mic.0.27220-0&mimeType=html&fmt=ahah

References

  1. Abe, H., Ohba, M., Shimma, Y. & Jigami, Y.(2004). Yeast cells harboring human alpha-1,3-fucosyltransferase at the cell surface engineered using Pir, a cell wall-anchored protein. FEMS Yeast Res 4, 417–425.[CrossRef] [Google Scholar]
  2. Alani, E., Cao, L. & Kleckner, N.(1987). A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116, 541–545.[CrossRef] [Google Scholar]
  3. Backen, A. C., Broadbent, I. D., Fetherston, R. W., Rosamond, J. D. C., Schnell, N. F. & Stark, M. J. R.(2000). Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans. Yeast 16, 1121–1129.[CrossRef] [Google Scholar]
  4. Baquero, C., Montero, M., Sentandreu, R. & Valentín, E.(2001). Molecular cloning of the RPS0 gene from Candida tropicalis. Yeast 18, 971–980.[CrossRef] [Google Scholar]
  5. Berman, J. & Sudbery, P. E.(2002).Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 12, 918–930. [Google Scholar]
  6. Bertram, G., Swoboda, R. K., Gooday, G. W., Gow, N. A. & Brown, A. J.(1996). Structure regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. Yeast 12, 115–127.[CrossRef] [Google Scholar]
  7. Boeke, J. D., LaCroute, F. & Fink, G. R.(1984). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197, 345–346.[CrossRef] [Google Scholar]
  8. Brenner, C., Bevan, A. & Fuller, R. S.(1994). Biochemical and genetic methods for analyzing specificity and activity of a precursor-processing enzyme: yeast Kex2 protease, kexin. Methods Enzymol 244, 152–167. [Google Scholar]
  9. Burnette, W. N.(1981). “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112, 195–203.[CrossRef] [Google Scholar]
  10. Calderone, R. A. & Fonzi, W. A.(2001). Virulence factors of Candida albicans. Trends Microbiol 19, 327–335. [Google Scholar]
  11. Castillo, L., Martínez, A. I., Garcerá, A., Elorza, M. V., Valentín, E. & Sentandreu, R.(2003). Functional analysis of cysteine residues and the repetitive sequences of ScPir4: the first repetitive sequence is needed to binding the cell wall β-1,3-glucan. Yeast 20, 973–983.[CrossRef] [Google Scholar]
  12. Cleves, A. E., Cooper, D. N., Barondes, S. H. & Kelly, R. B.(1996). A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol 133, 1017–1026.[CrossRef] [Google Scholar]
  13. Elorza, M. V., Rico, H. & Sentandreu, R.(1983). Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129, 1577–1582. [Google Scholar]
  14. Elorza, M. V., Marcilla, A. & Sentandreu, R.(1988). Wall mannoproteins of the yeast and mycelial cells of Candida albicans: nature of the glycosidic bonds and polydispersity of their mannan moieties. J Gen Microbiol 134, 2393–2403. [Google Scholar]
  15. Eroles, P., Sentandreu, M., Elorza, M. V. & Sentandreu, R.(1997). The highly immunogenic proteins enolase and Hsp70 are adventitious Candida albicans cell wall proteins that act as virulence factors. Microbiology 143, 313–320.[CrossRef] [Google Scholar]
  16. Fonzi, W. A. & Irwin, M. Y.(1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728. [Google Scholar]
  17. Gietz, R. D. & Sugino, A.(1988). New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.[CrossRef] [Google Scholar]
  18. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H.(1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef] [Google Scholar]
  19. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R.(1984). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef] [Google Scholar]
  20. Goller, S. P., Schoisswohl, D., Baron, M., Parriche, M. & Kubicek, C. P.(1998). Role of endoproteolytic dibasic proprotein processing in maturation of secretory proteins in Trichoderma reesei. Appl Environ Microbiol 64, 3202–3208. [Google Scholar]
  21. Hanahan, D.(1985). Techniques for transformation of Escherichia coli. In DNA Cloning: a Practical Approach, p. 109. Edited by D. M. Glover. Oxford: IRL Press.
  22. Hawkes, R.(1982). Identification of concanavalin A-binding proteins after sodium dodecyl sulfate-gel electrophoresis and protein blotting. Anal Biochem 80, 348–355. [Google Scholar]
  23. Ibeas, J. I., Yun, D. J., Damsz, B. & 7 other authors(2001). Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant J 25, 271–280.[CrossRef] [Google Scholar]
  24. Ito, H., Fukuda, Y., Murata, K. & Kimura, A.(1983). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163–168. [Google Scholar]
  25. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. & Sakaki, Y.(2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98, 4569–4574.[CrossRef] [Google Scholar]
  26. Jaafar, L., Moukadiri, I. & Zueco, J.(2003). Characterization of a disulphide-bound Pir-cell wall protein (Pir-CWP) of Yarrowia lipolytica. Yeast 20, 417–426.[CrossRef] [Google Scholar]
  27. Kandasamy, R., Vediyappan, G. & Chaffin, W. L.(2000). Evidence for the presence of Pir-like proteins in Candida albicans. FEMS Microbiol Lett 186, 239–243.[CrossRef] [Google Scholar]
  28. Kapteyn, J. C., Van Egmond, P., Van Den Ende, H., Makarow, M. & Klis, F. M.(1999a). The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta 1,6-glucan-deficient mutants. Mol Microbiol 31, 1835–1844.[CrossRef] [Google Scholar]
  29. Kapteyn, J. C., Van Den Ende, H. & Klis, F. M.(1999b). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426, 373–383.[CrossRef] [Google Scholar]
  30. Kapteyn, J. C., Hoyer, L. L., Hecht, J. E., Muller, W. H., Andel, A., Verjleij, A. J., Makarow, M., Van Den Ende, H. & Klis, F. M.(2000). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35, 601–611. [Google Scholar]
  31. Kapteyn, J. C., ter Riet, B., Vink, E., Blad, S., De Nobel, H., Van Den Ende, H. & Klis, F. M.(2001). Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39, 469–479.[CrossRef] [Google Scholar]
  32. Klis, F. M., de Groot, P. & Hellingwerf, K.(2001). Molecular organization of the cell wall of Candida albicans. Med Mycol 39, 1–8.[CrossRef] [Google Scholar]
  33. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S.(2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 3, 239–256. [Google Scholar]
  34. Laemmli, U. K.(1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef] [Google Scholar]
  35. Langford, C. J. & Gallwitz, D.(1983). Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell 33, 519–527.[CrossRef] [Google Scholar]
  36. Marcilla, A., Elorza, M. V., Mormeneo, S., Rico, H. & Sentandreu, R.(1991).Candida albicans mycelial wall structure: supramolecular complexes released by zymolyase, chitinase and β-mercaptoethanol. Arch Microbiol 155, 312–319. [Google Scholar]
  37. Marcilla, A., Mormeneo, S., Elorza, M. V., Manclus, J. J. & Sentandreu, R.(1993). Wall formation by Candida albicans yeast cells: secretion and incorporation of two types of mannoproteins. J Gen Microbiol 139, 2985–2993.[CrossRef] [Google Scholar]
  38. Millete, C. F. & Scott, B. K.(1984). Identification of spermatogenic cell plasma membrane glycoproteins by two dimensional electrophoresis and lectin blotting. J Cell Sci 65, 233–248. [Google Scholar]
  39. Mizuno, K., Nakamura, T., Ohshima, T., Tanaka, S. & Matsuo, H.(1989). Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 159, 305–311.[CrossRef] [Google Scholar]
  40. Mormeneo, S., Marcilla, A., Iranzo, M. & Sentandreu, R.(1995). Structural mannoproteins released by β-elimination from Candida albicans cell walls. FEMS Microbiol Lett 123, 131–136. [Google Scholar]
  41. Moukadiri, I., Jaafar, L. & Zueco, J.(1999). Identification of two mannoproteins released from cell walls of a Saccharomyces cerevisiae mnn1 mnn9 double mutant by reducing agents. J Bacteriol 181, 4741–4745. [Google Scholar]
  42. Mrša, V. & Tanner, W.(1999). Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15, 813–820.[CrossRef] [Google Scholar]
  43. Mrša, V., Ecker, M., Strahl-Bolsinger, S., Nimtz, M., Lehle, L. & Tanner, W.(1999). Deletion of new covalently linked cell wall glycoproteins alters the electrophoretic mobility of phosphorylated wall components of Saccharomyces cerevisiae. J Bacteriol 181, 3076–3086. [Google Scholar]
  44. Pardo, M., Monteoliva, L., Plá, J., Sánchez, M., Gil, C. & Nombela, C.(1999). Two-dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. Yeast 15, 459–472.[CrossRef] [Google Scholar]
  45. Pardo, M., Ward, M., Bains, S., Molina, M., Blackstock, W., Gil, C. & Nombela, C.(2000). A proteomic approach for the study of Saccharomyces cerevisiae cell wall biogenesis. Electrophoresis 21, 3396–3410.[CrossRef] [Google Scholar]
  46. Ram, A. F., Wolters, A., Ten Hoopen, R. & Klis, F. M.(1994). A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10, 1019–1030.[CrossRef] [Google Scholar]
  47. Reddy, V. A., Johnson, R. S., Biemann, K., Williams, R. S., Ziegler, F. D., Trimble, R. B. & Maley, F.(1988). Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons. J Biol Chem 263, 6978–6985. [Google Scholar]
  48. Sentandreu, R., Elorza, M. V. & Ruiz-Herrera, J.(2001). Structure, synthesis and assembly of fungal cell wall glycoproteins. In Recent Research Developments in Microbiology, pp. 23–33. Edited by S. G. Pandalai. Trivandrum, India: Research Signpost.
  49. Spreghini, E., Davis, D. A., Subaran, R., Kim, M. & Mitchell, A. P.(2003). Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot Cell 2, 746–755.[CrossRef] [Google Scholar]
  50. Sundstrom, P.(2002). Adhesion in Candida spp. Cell Microbiol 8, 461–469. [Google Scholar]
  51. Toh-e, A., Yasunaga, S., Nisogi, H., Tanaka, K., Oguchi, T. & Matsui, Y.(1993). Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 9, 481–494.[CrossRef] [Google Scholar]
  52. Towbin, H., Staehelin, T. & Gordon, J.(1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef] [Google Scholar]
  53. Van der Vaart, J. M., Caro, L. H., Chapman, J. W., Klis, F. M. & Verrips, C. T.(1995). Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177, 3104–3110. [Google Scholar]
  54. Von Heijne, G.(1986). New method for predicting signal sequence cleavage sites. Nucleic Acids Res 11, 4683–4690. [Google Scholar]
  55. Wilson, R. B., Davis, D. & Mitchell, A. P.(1999). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868–1874. [Google Scholar]
  56. Yun, D. J., Zhao, Y., Pardo, J. M. & 7 other authors(1997). Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci U S A 94, 7082–7087.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27220-0
Loading
/content/journal/micro/10.1099/mic.0.27220-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error