Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1 Stingley, Robin L. and Brezna, Barbara and Khan, Ashraf A. and Cerniglia, Carl E.,, 150, 3749-3761 (2004), doi = https://doi.org/10.1099/mic.0.27263-0, publicationName = Microbiology Society, issn = 1350-0872, abstract= Mycobacterium vanbaalenii PYR-1 is capable of degrading polycyclic aromatic hydrocarbons (PAHs) to ring cleavage metabolites. This study identified and characterized a putative phthalate degradation operon in the M. vanbaalenii PYR-1 genome. A putative regulatory protein (phtR) was encoded divergently with five tandem genes: phthalate dioxygenase large subunit (phtAa), small subunit (phtAb), phthalate dihydrodiol dehydrogenase (phtB), phthalate dioxygenase ferredoxin subunit (phtAc) and phthalate dioxygenase ferredoxin reductase (phtAd). A 6·7 kb EcoRI fragment containing these genes was cloned into Escherichia coli and converted phthalate to 3,4-dihydroxyphthalate. Homologues to the operon region were detected in a number of PAH-degrading Mycobacterium spp. isolated from various geographical locations. The operon differs from those of other Gram-positive bacteria in both the placement and orientation of the regulatory gene. In addition, the M. vanbaalenii PYR-1 pht operon contains no decarboxylase gene and none was identified within a 37 kb region containing the operon. This study is the first report of a phthalate degradation operon in Mycobacterium spp., language=, type=