1887

Abstract

Although is essential for growth of strain BY4741, the growth of a Δ haploid was partially restored by the addition of 0·6 M sorbitol to the growth medium. Rot1p is predicted to contain 256 amino acids, to have a molecular mass of 29 kDa, and to possess a transmembrane domain near its C-terminus. and have Rot1p homologues with high identity that also have predicted transmembrane domains. To explore the role of Rot1p, the phenotypes of the Δ haploid were analysed. Deletion of caused cell aggregation and an abnormal morphology. Analysis of the cell cycle showed that Δ cells are delayed at the G2/M phase. The Δ cells were resistant to K1 killer toxin and hypersensitive to SDS and hygromycin B, suggesting that they had cell wall defects. Indeed, greatly reduced levels of alkali-soluble and -insoluble 1,6--glucan, and increased levels of chitin and 1,3--glucan, were found in Δ cells. Furthermore, the phenotypes of Δ cells resemble those of disruption mutants of the and genes, which show greatly reduced levels of cell wall 1,6--glucan. Incorporation of glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Δ and Δ cells was examined using a GFP–Flo1 fusion protein. GFP fluorescence was detected both on the cell surface and in the culture medium, suggesting that, in these mutants, mannoproteins may become only weakly bound to the cell wall and some of these proteins are released into the medium. Electron microscopic analyses of Δ and Δ cells showed that the electron-dense mannoprotein rim staining was more diffuse and paler than that in the wild-type, and that the outer boundary of the cell wall was irregular. A ΔΔ double mutant had a growth rate similar to the corresponding single mutants, suggesting that Rot1p and Big1p have related functions in 1,6--glucan synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27292-0
2004-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503163.html?itemId=/content/journal/micro/10.1099/mic.0.27292-0&mimeType=html&fmt=ahah

References

  1. Al-Aidroos, K. & Bussey, H.(1978). Chromosomal mutants of Saccharomyces cerevisiae affecting the cell wall binding site for killer factor. Can J Microbiol 24, 228–237.[CrossRef] [Google Scholar]
  2. Azuma, M., Levinson, J. N., Page, N. & Bussey, H.(2002).Saccharomyces cerevisiae Big1p, a putative endoplasmic reticulum membrane protein required for normal levels of cell wall β-1,6-glucan. Yeast 19, 783–793.[CrossRef] [Google Scholar]
  3. Baba, M. & Osumi, M.(1987). Transmission and scanning electron microscopic examination of intracellular organelles in freeze-substituted Kloeckera and Saccharomyces cerevisiae yeast cells. J Electron Microsc Techn 5, 249–261.[CrossRef] [Google Scholar]
  4. Bickle, M., Delley, P. A., Schmidt, A. & Hall, M. N.(1998). Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17, 2235–2245.[CrossRef] [Google Scholar]
  5. Bony, M., Thines-Sempoux, D., Barre, P. & Blondin, B.(1997). Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179, 4929–4936. [Google Scholar]
  6. Boone, C., Sommer, S. S., Hensel, A. & Bussey, H.(1990). Yeast KRE genes provide evidence for a pathway of cell wall β-glucan assembly. J Cell Biol 110, 1833–1843.[CrossRef] [Google Scholar]
  7. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. & Boeke, J. D.(1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.[CrossRef] [Google Scholar]
  8. Brown, J. L., Kossaczka, Z., Jiang, B. & Bussey, H.(1993). A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1,6)-β-glucan synthesis. Genetics 133, 837–849. [Google Scholar]
  9. Bussey, H.(1991). K1 killer toxin, a pore-forming protein from yeast. Mol Microbiol 5, 2339–2343.[CrossRef] [Google Scholar]
  10. Bussey, H., Sacks, W., Galley, D. & Saville, D.(1982). Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function. Mol Cell Biol 2, 346–354. [Google Scholar]
  11. Caro, L. H., Tettelin, H., Vossen, J. H., Ram, A. F., van den Ende, H. & Klis, F. M.(1997). In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477–1489.[CrossRef] [Google Scholar]
  12. Chen, D. C., Yang, B. C. & Kuo, T. T.(1992). One-step transformation of yeast in stationary phase. Curr Genet 21, 83–84.[CrossRef] [Google Scholar]
  13. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P.(1992). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122.[CrossRef] [Google Scholar]
  14. Cid, V. J., Duran, A., Del Rey, F., Snyder, M. P., Nombela, C. & Sanchez, M.(1995). Molecular basis of cell integrity and morphogenesis in S. cerevisiae. Microbiol Rev 59, 345–386. [Google Scholar]
  15. De Groot, P. W., Hellingwerf, K. J. & Klis, F. M.(2003). Genome-wide identification of fungal GPI proteins. Yeast 20, 781–796.[CrossRef] [Google Scholar]
  16. Fernandez, F., Jannatipour, M., Hellman, U., Rokeach, L. A. & Parodi, A. J.(1996). A new stress protein: synthesis of Schizosaccharomyces pombe UDP-Glc : glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability. EMBO J 15, 705–713. [Google Scholar]
  17. Gietz, R. D., Schiestl, R. H., Willems, A. R. & Woods, R. A.(1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.[CrossRef] [Google Scholar]
  18. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. & O'Shea, E. K.(2003). Global analysis of protein localization in budding yeast. Nature 425, 686–691.[CrossRef] [Google Scholar]
  19. Jiang, B., Sheraton, J., Ram, A. F. J., Dijkgraaf, G. J., Klis, F. M. & Bussey, H.(1996).CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. J Bacteriol 178, 1162–1171. [Google Scholar]
  20. Kanai, T., Atomi, H., Umemura, K., Ueno, H., Teranishi, Y., Ueda, M. & Tanaka, A.(1996). A novel heterologous gene expression system in Saccharomyces cerevisiae using the isocitrate lyase gene promoter from Candida tropicalis. Appl Microbiol Biotechnol 44, 759–765. [Google Scholar]
  21. Kapteyn, J. C., Montijn, R. C., Vink, E., De La Cruz, J., Llobell, A., Douwes, J. E., Shimoi, H., Lipke, P. N. & Klis, F. M.(1996). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6, 337–345.[CrossRef] [Google Scholar]
  22. Kapteyn, J. C., Van Den Ende, H. & Klis, F. M.(1999). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 2, 373–383. [Google Scholar]
  23. Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E.(1997). Architecture of the yeast cell wall. β(1,6)-glucan interconnects mannoprotein, β(1,3)-glucan, and chitin. J Biol Chem 272, 17762–17775.[CrossRef] [Google Scholar]
  24. Levinson, J. N., Shahinian, S., Sdicu, A. M., Tessier, D. C. & Bussey, H.(2002). Functional, comparative and cell biological analysis of Saccharomyces cerevisiae Kre5p. Yeast 19, 1243–1259.[CrossRef] [Google Scholar]
  25. Lussier, M., White, A. M., Sheraton, J. & 17 other authors(1997). Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147, 435–450. [Google Scholar]
  26. Meaden, P., Hill, K., Wagner, J., Slipetz, D., Sommer, S. S. & Bussey, H.(1990). The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1,6)-β-d-glucan synthesis and normal cell growth. Mol Cell Biol 10, 3013–3019. [Google Scholar]
  27. Orlean, P.(1997). Biogenesis of yeast wall and surface components. In The Molecular Biology of the Yeast Saccharomyces, vol. 3, pp. 229–362. Edited by J. R. Pringle, J. R. Broach & E. W. Jones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Page, N., Gerard-Vincent, M., Menard, P. & 9 other authors(2003). A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 163, 875–894. [Google Scholar]
  29. Parker, C. G., Fessler, L. I., Nelson, R. E. & Fessler, J. H.(1995).Drosophila UDP-glucose : glycoprotein glucosyltransferase: sequence and characterization of an enzyme that distinguishes between denatured and native proteins. EMBO J 14, 1294–1303. [Google Scholar]
  30. Ram, A. F., Wolters, A., Ten Hoopen, R. & Klis, F. M.(1994). A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10, 1019–1030.[CrossRef] [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T.(1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Sato, N., Matsumoto, T., Ueda, M., Tanaka, A., Fukuda, H. & Kondo, A.(2002). Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60, 469–474.[CrossRef] [Google Scholar]
  33. Shahinian, S. & Bussey, H.(2000).β-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35, 477–489. [Google Scholar]
  34. Shahinian, S., Dijkgraaf, G. J., Sdicu, A. M., Thomas, D. Y., Jakob, C. A., Aebi, M. & Bussey, H.(1998). Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall β-1,6-glucan of Saccharomyces cerevisiae. Genetics 149, 843–856. [Google Scholar]
  35. Sherman, F., Fink, G. & Hicks, J. B.(1982).Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Sikorski, R. S. & Hieter, P.(1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27. [Google Scholar]
  37. Simons, J. F., Ebersold, M. & Helenius, A.(1998). Cell wall 1,6-β-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J 17, 396–405.[CrossRef] [Google Scholar]
  38. Trombetta, E. S., Simons, J. F. & Helenius, A.(1996). Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem 271, 27509–27516.[CrossRef] [Google Scholar]
  39. Winzeler, E. A., Shoemaker, D. D., Astromoff, A. & 49 other authors(1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27292-0
Loading
/content/journal/micro/10.1099/mic.0.27292-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error