1887

Abstract

It was previously shown that downregulates carbon metabolism in upon glucose exhaustion, and that the gene is glucose repressed. Here, it is shown that glucose repression of is overcome upon nitrogen withdrawal, suggesting that is a regulator of carbon and nitrogen metabolism. -Galactosidase activity fostered by the promoter of /, which encode anabolic enzymes of nitrogen metabolism, was altered in an disruptant. As compared to the wild-type strain, the disruptant showed a decrease in the ratio of 2-oxoglutarate to glutamate under nitrogen-limited conditions. disruptants showed reduced pseudohyphal formation and enhanced sporulation, a phenomenon that occurs under conditions of both nitrogen and carbon withdrawal. These studies revealed that regulates carbon and nitrogen metabolism, as well as morphogenetic changes, suggesting that is a component of the link between the metabolic status of the cell and the corresponding developmental pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27347-0
2005-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510091.html?itemId=/content/journal/micro/10.1099/mic.0.27347-0&mimeType=html&fmt=ahah

References

  1. Adams A., Gottschling D. E., Kaiser C. A., Stearns T. 1997 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Avendano A., Deluna A., Olivera H., Valenzuela L., Gonzalez A. 1997; GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae . J Bacteriol 179:5594–5597
    [Google Scholar]
  3. Bertram P. G., Choi J. H., Carvalho J., Chan T. F., Ai W., Zheng X. F. 2002; Convergence of TOR–nitrogen and Snf1–glucose signaling pathways onto Gln3. Mol Cell Biol 22:1246–1252 [CrossRef]
    [Google Scholar]
  4. Beutler H. O. 1985; l-Glutamate, colorimetric method with glutamate dehydrogenase and diaphorase. In Methods of Enzymatic Analysis vol. VIII pp 369–376 Edited by Bergmeyer H. U. Weinheim: VCH;
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  6. Burlina A. 19852–Oxoglutarate In Methods of Enzymatic Analysis vol. VII pp 20–24 Edited by Bergmeyer H. U. Weinheim: VCH;
    [Google Scholar]
  7. Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P. O., Herskowitz I. 1998; The transcriptional program of sporulation in budding yeast. Science 282:699–705 [CrossRef]
    [Google Scholar]
  8. Cox K. H., Tate J. J., Cooper T. G. 2002; Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae . J Biol Chem 277:37559–37566 [CrossRef]
    [Google Scholar]
  9. Cunningham T. S., Svetlov V. V., Rai R., Smart W., Cooper T. G. 1996; G1n3p is capable of binding to UAS (NTR) elements and activating transcription in Saccharomyces cerevisiae . J Bacteriol 178:3470–3479
    [Google Scholar]
  10. Dang V. D., Bohn C., Bolotin-Fukuhara M., Daignan-Fornier B. 1996; The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae , defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178:1842–1849
    [Google Scholar]
  11. DeLuna A., Avendano A., Riego L., Gonzalez A. 2001; NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae . Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783 [CrossRef]
    [Google Scholar]
  12. Der Garabedian P. A. 1986; Candida δ -aminovalerate :  α -ketoglutarate aminotransferase: purification and enzymologic properties. Biochemistry 25:5507–5512 [CrossRef]
    [Google Scholar]
  13. Esposito R. E., Klapholz S. 1981; The Molecular Biology of the Yeast Saccharomyces cerevisiae . I. Life Cycle and Inheritance pp 211–287 Edited by Strathren J. N., Jones E. W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Freund R. J., Wilson W. L. 1993 Statistical Methods London: Academic Press;
    [Google Scholar]
  15. Gancedo J. M. 2001; Control of pseudohyphae formation in Saccharomyces cerevisiae . FEMS Microbiol Rev 25:107–123 [CrossRef]
    [Google Scholar]
  16. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. 2000; Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257 [CrossRef]
    [Google Scholar]
  17. Gimeno C. J., Fink G. R. 1994; Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14:2100–2112
    [Google Scholar]
  18. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. 1992; Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090 [CrossRef]
    [Google Scholar]
  19. Ho Y., Gruhler A., Heilbut A. 43 other authors 2002; Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183 [CrossRef]
    [Google Scholar]
  20. Ito H., Fukuda Y., Murata K., Kimura A. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168
    [Google Scholar]
  21. Kabir M. A., Khanday F. A., Mehta D. V., Bhat P. J. 2000; Multiple copies of MRG19 suppress transcription of the GAL1 promoter in a GAL80 -dependent manner in Saccharomyces cerevisiae . Mol Gen Genet 262:1113–1122 [CrossRef]
    [Google Scholar]
  22. Kang L., Keeler M. L., Dunlop P. C., Roon R. J. 1982; Nitrogen catabolite repression in a glutamate auxotroph of Saccharomyces cerevisiae . J Bacteriol 151:29–35
    [Google Scholar]
  23. Khale A., Srinivasan M. C., Deshpande M. V. 1992; Significance of NADP/NAD glutamate dehydrogenase ratio in the dimorphic behavior of Benjaminiella poitrasii and its morphological mutants. J Bacteriol 174:3723–3728
    [Google Scholar]
  24. Khanday F. A., Saha M., Bhat P. J. 2002; Molecular characterization of MRG19 of Saccharomyces cerevisiae . Implication in the regulation of galactose and nonfermentable carbon source utilization. Eur J Biochem 269:5840–5850 [CrossRef]
    [Google Scholar]
  25. Liao X. S., Small W. C., Srere P. A., Butow R. A. 1991; Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae . Mol Cell Biol 11:38–46
    [Google Scholar]
  26. Liu Z., Butow R. A. 1999; A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19:6720–6728
    [Google Scholar]
  27. Lorenz M. C., Heitman J. 1998a; Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150:1443–1457
    [Google Scholar]
  28. Lorenz M. C., Heitman J. 1998b; The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae . EMBO J 17:1236–1247 [CrossRef]
    [Google Scholar]
  29. Lorenz M. C., Pan X., Harashima T., Cardenas M. E., Xue Y., Hirsch J. P., Heitman J. 2000; The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae . Genetics 154:609–622
    [Google Scholar]
  30. Miller S. M., Magasanik B. 1991; Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae . Mol Cell Biol 11:6229–6247
    [Google Scholar]
  31. Mosch H. U., Roberts R. L., Fink G. R. 1996; Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 93:5352–5356 [CrossRef]
    [Google Scholar]
  32. Moye W. S., Amuro N., Rao J. K., Zalkin H. 1985; Nucleotide sequence of yeast GDH1 encoding nicotinamide-adenine-dinucleotide-phosphate-dependent glutamate dehydrogenase. J Biol Chem 260:8502–8508
    [Google Scholar]
  33. Parikh V. S., Morgan M. M., Scott R., Clements L. S., Butow R. A. 1987; The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576–580 [CrossRef]
    [Google Scholar]
  34. Riego L., Avendano A., DeLuna A., Rodriguez E., Gonzalez A. 2002; GDH1 expression is regulated by GLN3 , GCN4 , and HAP4 under respiratory growth. Biochem Biophys Res Commun 293:79–85 [CrossRef]
    [Google Scholar]
  35. Roberts R. L., Mosch H. U., Fink G. R. 1997; 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae . Cell 89:1055–1065 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sherman F. 1991; Getting started with yeast. In Guide to Yeast Genetics and Molecular Biology Edited by Guthrie C., Fink G. R. San Diego, CA: Academic Press;
    [Google Scholar]
  38. Stanbrough M., Rowen D. W., Magasanik B. 1995; Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci U S A 92:9450–9454 [CrossRef]
    [Google Scholar]
  39. Werner-Washburne M., Braun E. L., Crawford M. E., Peck V. M. 1996; Stationary phase in Saccharomyces cerevisiae . Mol Microbiol 19:1159–1166 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27347-0
Loading
/content/journal/micro/10.1099/mic.0.27347-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error