1887

Abstract

LasX regulates the transcription of the divergent operons and , which specify the production of lactocin S in L45. Using histidine-tagged LasX, and a DNA fragment containing the complete intergenic region, electrophoresis mobility-shift (EMSA) analyses were employed to demonstrate that LasX binds to the intergenic DNA. Two direct heptanucleotide motifs directly upstream of P, and a third imperfect copy of this motif, overlapping the −10 element of P, were identified as possible LasX-binding sites. To assess the role of the direct repeats in the binding of LasX to the intergenic region, binding experiments were performed using DNA probes with different combinations of the repeats, and with arbitrarily chosen repeat substitutions. The result of these experiments demonstrated that only the middle repeat was required for the binding of LasX to the -promoter region. This observation correlated with the results of subsequent reporter-gene analyses, thereby weakening the hypothesis of the involvement of the direct repeats in LasX-mediated transcription regulation. By analysing the ability of LasX to bind successively shortened derivatives of the original intergenic fragment, a tentative 19 bp minimum LasX-binding site was identified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27364-0
2005-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510813.html?itemId=/content/journal/micro/10.1099/mic.0.27364-0&mimeType=html&fmt=ahah

References

  1. Ajdić D., McShan W. M., McLaughlin R. E. 16 other authors & ; 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef]
    [Google Scholar]
  2. Berthier F., Zagorec M., Ehrlich S. D., Morel-Deville F, Champomier-Vergès M. 1996; Efficient transformation of Lactobacillus sakei by electroporation. Microbiology 142:1273–1279 [CrossRef]
    [Google Scholar]
  3. Chaussee M. S., Ferretti J. J, Ajdić D. 1999; The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect Immun 67:1715–1722
    [Google Scholar]
  4. Chaussee M. S., Watson R. O., Smoot J. C., Musser J. M. 2001; Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect Immun 69:822–831 [CrossRef]
    [Google Scholar]
  5. Chaussee M. S., Sylva G. L., Sturdevant D. E., Smoot L. M., Graham M. R., Watson R. O., Musser J. M. 2002; Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes . Infect Immun 70:762–770 [CrossRef]
    [Google Scholar]
  6. Chaussee M. S., Somerville G. A., Reitzer L., Musser J. M. 2003; Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes . J Bacteriol 185:6016–6024 [CrossRef]
    [Google Scholar]
  7. Ferretti J. J., McShan W. M., Ajdic D. 20 other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98:4658–4663 [CrossRef]
    [Google Scholar]
  8. Fried M. G. 1989; Measurement of protein–DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10:366–376 [CrossRef]
    [Google Scholar]
  9. Fujiwara T., Hoshino T., Ooshima T., Sobue S., Hamada S. 2000; Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect Immun 68:2475–2483 [CrossRef]
    [Google Scholar]
  10. Glaser P., Frangeul L., Buchrieser C. & 52 other authors; 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  11. Glaser P., Rusniok C., Buchrieser C. & 9 other authors; 2002; Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 45:1499–1513 [CrossRef]
    [Google Scholar]
  12. Hillman J. D., Novak J., Sagura E. & 8 other authors; 1998; Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun 66:2743–2749
    [Google Scholar]
  13. Hochschild A., Dove S. L. 1998; Protein–protein contacts that activate and repress prokaryotic transcription. Cell 92:597–600 [CrossRef]
    [Google Scholar]
  14. Huffman J. L., Brennan R. G. 2002; Prokaryotic transcription regulators: more than just the helix–turn–helix motif. Curr Opin Struct Biol 12:98–106 [CrossRef]
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  16. Lyon W. R., Gibson C. M., Caparon M. G. 1998; A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J 17:6263–6275 [CrossRef]
    [Google Scholar]
  17. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Mørtvedt C. I., Nes I. F. 1990; Plasmid-associated bacteriocin production by a Lactobacillus sakei strain. J Gen Microbiol 136:1601–1607 [CrossRef]
    [Google Scholar]
  19. Neely M. N., Lyon W. R., Runft D. L., Caparon M. 2003; Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes.. J Bacteriol 185:5166–5174 [CrossRef]
    [Google Scholar]
  20. Qi F., Chen P., Caufield P. W. 1999; Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl Environ Microbiol 65:652–658
    [Google Scholar]
  21. Rawlinson E. L., Nes I. F., Skaugen M. 2002; LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor. Biochimie 84:559–567 [CrossRef]
    [Google Scholar]
  22. Rhodius V. A., Busby S. J. 1998; Positive activation of gene expression. Curr Opin Microbiol 1:152–159 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sanders J. W., Leenhouts K., Burghoorn J., Brands J. R., Venema G., Kok J. 1998; A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310 [CrossRef]
    [Google Scholar]
  26. Skaugen M., Abildgaard C. I. M., Nes I. F. 1997; Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. Mol Gen Genet 253:674–686 [CrossRef]
    [Google Scholar]
  27. Skaugen M., Andersen E. L., Christie V. H., Nes I. F. 2002; Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Appl Environ Microbiol 68:720–727 [CrossRef]
    [Google Scholar]
  28. Stentz R., Loizel C., Malleret C., Zagorec M. 2000; Development of genetic tools for Lactobacillus sakei: disruption of the β-galactosidase gene and use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Appl Environ Microbiol 66:4272–4278 [CrossRef]
    [Google Scholar]
  29. Sulavik M. S., Clewell D. B. 1996; Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene. J Bacteriol 178:5826–5830
    [Google Scholar]
  30. Sulavik M. C., Tardif G., Clewell D. B. 1992; Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J Bacteriol 174:3577–3586
    [Google Scholar]
  31. Tettelin H., Nelson K. E., Paulsen I. T. & 36 other authors; 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498–506 [CrossRef]
    [Google Scholar]
  32. Vickerman M. M., Minick P. E. 2002; Genetic analysis of the rgggtfG junctional region and its role in Streptococcus gordonii glucosyltransferase activity. Infect Immun 70:1703–1714 [CrossRef]
    [Google Scholar]
  33. Vickerman M. M., Wang M., Baker L. J. 2003; An amino acid change near the carboxyl terminus of the Streptococcus gordonii regulatory protein Rgg affects its abilities to bind DNA and influence expression of the glucosyltransferase gene gtfG. Microbiology 149:399–406 [CrossRef]
    [Google Scholar]
  34. Wintjens R. T., Rooman M. J., Wodak S. J. 1996; Automatic classification and analysis of αα-turn motifs in proteins. J Mol Biol 255:235–253 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27364-0
Loading
/content/journal/micro/10.1099/mic.0.27364-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error