1887

Abstract

was cultivated in chemostat cultures on lactose-containing medium. The cultures were characterized for growth, consumption of the carbon source and protein production. Secreted proteins were produced most efficiently at low specific growth rates, 0·022–0·033 h, the highest specific rate of total protein production being 4·1 mg g h at the specific growth rate 0·031 h. At low specific growth rates, up to 29 % of the proteins produced were extracellular, in comparison to only 6–8 % at high specific growth rates, 0·045–0·066 h. To analyse protein synthesis and secretion in more detail, metabolic labelling of proteins was applied to analyse production of the major secreted protein, cellobiohydrolase I (CBHI, Cel7A). Intracellular and extracellular labelled CBHI was quantified and analysed for pI isoforms in two-dimensional gels, and the synthesis and secretion rates of the molecule were determined. Both the specific rates of CBHI synthesis and secretion were highest at low specific growth rates, the optimum being at 0·031 h. However, at low specific growth rates the secretion rate/synthesis rate ratio was significantly lower than that at high specific growth rates, indicating that at low growth rates the capacity of cells to transport the protein becomes limiting. In accordance with the high level of protein production and limitation in the secretory capacity, the transcript levels of the unfolded protein response (UPR) target genes and as well as the gene encoding the UPR transcription factor were induced.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27458-0
2005-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510135.html?itemId=/content/journal/micro/10.1099/mic.0.27458-0&mimeType=html&fmt=ahah

References

  1. Basset J., Deney R. C., Jeffery G. F., Mendham J. 1987 Vogel's Textbook of Quantitative Inorganic Analysis , 4th edn. New York: Wiley;
    [Google Scholar]
  2. Biely P., Tenkanen M. 1998; Enzymology of hemicellulose degradation. In Trichoderma and Gliocladium pp 25–47 Edited by Harman G. E., Kubicek C. P. London. Bristol: Taylor & Francis Ltd;
    [Google Scholar]
  3. Braakman I., Hoover-Litty H., Wagner K. R., Helenius A. 1991; Folding of influenza hemagglutinin in the endoplasmic reticulum. J Cell Biol 114:401–411 [CrossRef]
    [Google Scholar]
  4. Carlsen M., Nielsen J., Villadsen J. 1996; Growth and α -amylase production by Aspergillus oryzae during continuous cultivations. J Biotechnol 45:81–93 [CrossRef]
    [Google Scholar]
  5. Castillo F. J., Blanch H. W., Wilke C. R. 1984; Lactase production in continuous culture by Trichoderma reesei Rut-C30. Biotechnol Lett 6:593–596 [CrossRef]
    [Google Scholar]
  6. Chaudhuri B. K., Sahai V. 1994; Comparison of growth and maintenance parameters for cellulase biosynthesis by Trichoderma reesei -C5 with some published data. Enzyme Microb Technol 16:1079–1083 [CrossRef]
    [Google Scholar]
  7. Collén A., Saloheimo M., Bailey M., Penttilä M., Pakula T. M. 2004; Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng in press
    [Google Scholar]
  8. Foreman P. K., Brown D., Dankmeyer L. 14 other authors 2003; Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997 [CrossRef]
    [Google Scholar]
  9. Horwitz M. S., Scharff M. D., Maizel J. V. 1969; Synthesis and assembly of adenovirus 2. I. Polypeptide synthesis, assembly of capsomeres, and morphogenesis of the virion. Virology 39:682–694 [CrossRef]
    [Google Scholar]
  10. Ilmén M., Thrane C., Penttilä M. 1996; The glucose repressor gene cre1 of Trichoderma : isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460
    [Google Scholar]
  11. Ilmén M., Saloheimo A., Onnela M.-L., Penttilä M. E. 1997; Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei . Appl Environ Microbiol 63:1298–1306
    [Google Scholar]
  12. Keränen S., Penttilä M. 1995; Production of recombinant proteins in the filamentous fungus Trichoderma reesei . Curr Opin Biotechnol 6:534–537 [CrossRef]
    [Google Scholar]
  13. Kubicek C., Penttilä M. 1998; Regulation of production of plant polysaccharide degrading enzymes by Trichoderma . In Trichoderma and Gliocladium pp 49–72 Edited by Harman G. E., Kubicek C. P. London: Taylor & Francis Ltd;
    [Google Scholar]
  14. Loftfield R. B., Eigner E. A. 1958; The time required for the synthesis of a ferritin molecule in rat liver. J Biol Chem 231:925–943
    [Google Scholar]
  15. Mach R. L., Zeilinger S. 2003; Regulation of gene expression in industrial fungi: Trichoderma . Appl Microbiol Biotechnol 60:515–522 [CrossRef]
    [Google Scholar]
  16. Margolles-Clark E., Ilmén M., Penttilä M. 1997; Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57:167–179 [CrossRef]
    [Google Scholar]
  17. Montenecourt B. S., Eveleigh D. E. 1979; Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei . Adv Chem Ser 181:289–301
    [Google Scholar]
  18. Mulder H. J., Saloheimo M., Penttila M., Madrid S. M. 2004; The transcription factor HACA mediates the unfolded protein response in Aspergillus niger , and up-regulates its own transcription. Mol Genet Genomics 271:130–140 [CrossRef]
    [Google Scholar]
  19. Ngiam C., Jeenes D. J., Archer D. B. 1997; Isolation and characterisation of a gene encoding protein disulphide isomerase, pdiA, from Aspergillus niger . Curr Genet 31:133–138 [CrossRef]
    [Google Scholar]
  20. Nielsen J., Villadsen J. 1994 Bioreaction Engineering Principles pp 480 New York: Plenum;
    [Google Scholar]
  21. Pakula T. M., Uusitalo J., Saloheimo M., Salonen K., Aarts R. J., Penttilä M. 2000; Monitoring the kinetics of glycoprotein synthesis and secretion in the filamentous fungus Trichoderma reesei : cellobiohydrolase I (CBHI) as a model protein. Microbiology 146:223–232
    [Google Scholar]
  22. Pakula T. M., Laxell M., Huuskonen A., Uusitalo J., Saloheimo M., Penttilä M. 2003; The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei . Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem 278:45011–45020 [CrossRef]
    [Google Scholar]
  23. Pedersen H., Beyer M., Nielsen J. 2000; Glucoamylase production in batch, chemostat, and fed-batch cultivations by an industrial strain of Aspergillus niger . Appl Microbiol Biotechnol 53:272–277 [CrossRef]
    [Google Scholar]
  24. Penttilä M. 1998; Heterologous protein production in Trichoderma . In Trichoderma and Gliocladium pp 365–382 Edited by Harman G. E., Kubicek C. P. London: Taylor & Francis Ltd;
    [Google Scholar]
  25. Penttilä M., Limón C., Nevalainen H. 2004; Molecular biology of Trichoderma and biotechnological applications. In Mycology , Vol. 20, Handbook of Fungal Biotechnology pp 413–427 Edited by Arora D. K. , 2nd edn. New York, Basel: Marcel Dekker;
    [Google Scholar]
  26. Pirt S. J. 1965; The maintenance energy of bacteria in growing cultures. Proc R Soc B 163:224–231 [CrossRef]
    [Google Scholar]
  27. Punt P. J., Drint-Kuijvenhoven J., Hessing J. G., Beijersbergen A., Verrips C. T, van Gemeren I. A., van Muijlwijk-Harteveld G. M., van den Hondel C. A. 1998; Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein in the secretion of homologous and heterologous proteins in black Aspergilli . Appl Microbiol Biotechnol 50:447–454 [CrossRef]
    [Google Scholar]
  28. Saloheimo M., Lund M., Penttilä M. E. 1999; The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262:35–45 [CrossRef]
    [Google Scholar]
  29. Saloheimo M., Valkonen M., Penttilä M. 2003; Activation mechanisms of the HACI-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47:1149–1161 [CrossRef]
    [Google Scholar]
  30. Saloheimo M., Wang H., Valkonen M., Vasara T., Huuskonen A., Riikonen M., Pakula T., Ward M., Penttilä M. 2004; Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Appl Environ Microbiol 70:459–467 [CrossRef]
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Schafner D. W., Toledo R. T. 1992; Cellulase production in continuous culture by Trichoderma reesei on xylose-based media. Biotechnol Bioeng 39:865–869 [CrossRef]
    [Google Scholar]
  33. Schmoll M., Kubicek C. P. 2003; Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol Immunol Hung 50:125–145 [CrossRef]
    [Google Scholar]
  34. Schrickx J. M., Krave A. S., Verdoes J. C., Stouthamer A. H, van den Hondel C. A., van Verseveld H. W. 1993; Growth and product formation in chemostat and recycling cultures by Aspergillus niger N402 and a glucoamylase overproducing transformant, provided with multiple copies of the glaA gene. J Gen Microbiol 139:2801–2810 [CrossRef]
    [Google Scholar]
  35. Spohr A., Carlsen M., Nielsen J., Villadsen J. 1998; α -amylase production in recombinant Aspergillus oryzae during fed-batch and continuous cultivations. J Ferment Bioeng 86:49–56 [CrossRef]
    [Google Scholar]
  36. Strauss J., Mach R. L., Zeilinger S., Hartler G., Stoffler G., Wolschek M., Kubicek C. P. 1995; Cre1, the carbon catabolite repressor protein from Trichoderma reesei . FEBS Lett 376:103–107 [CrossRef]
    [Google Scholar]
  37. Takashima S., Nakamura A., Iikura H., Masaki H., Uozumi T. 1996; Cloning of a gene encoding a putative carbon catabolite repressor from Trichoderma reesei . Biosci Biotechnol Biochem 60:173–176 [CrossRef]
    [Google Scholar]
  38. van Gemeren I. A., Punt P. J., Drint-Kuyvenhoven A., Broekhuijsen M. P., Beijersbergen A., Verrips C. T, van't Hoog A., van den Hondel C. A. 1997; The ER chaperone encoding bipA gene of black Aspergilli is induced by heat shock and unfolded proteins. Gene 198:43–52 [CrossRef]
    [Google Scholar]
  39. Wiebe M. G., Robson G. D., Shuster J., Trinci A. P. 2000; Growth-rate-independent production of recombinant glucoamylase by Fusarium venenatum JeRS 325. Biotechnol Bioeng 68:245–251 [CrossRef]
    [Google Scholar]
  40. Withers J. M., Swift R. J., Wiebe M. G., Robson G. D., Punt P. J., Trinci A. P. J, van den Hondel C. A. M. J. J. 1998; Optimisation and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture. Biotechnol Bioeng 59:407–418 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27458-0
Loading
/content/journal/micro/10.1099/mic.0.27458-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error