1887

Abstract

Temporal and compartment-specific control of gene expression during sporulation in is governed by a cascade of four RNA polymerase subunits. in the prespore and in the mother cell control early stages of development, and are replaced at later stages by and , respectively. Ultimately, a comprehensive description of the molecular mechanisms underlying spore morphogenesis requires the knowledge of all the intervening genes and their assignment to specific regulons. Here, in an extension of earlier work, DNA macroarrays have been used, and members of the four compartment-specific sporulation regulons have been identified. Genes were identified and grouped based on: i) their temporal expression profile and ii) the use of mutants for each of the four sigma factors and a allele, which allows activation in the absence of . As a further test, artificial production of active alleles of the sigma factors in non-sporulating cells was employed. A total of 439 genes were found, including previously characterized genes whose transcription is induced during sporulation: 55 in the regulon, 154 -governed genes, 113 -dependent genes, and 132 genes under control. The results strengthen the view that the activities of , , and are largely compartmentalized, both temporally as well as spatially, and that the major vegetative sigma factor ( ) is active throughout sporulation. The results provide a dynamic picture of the changes in the overall pattern of gene expression in the two compartments of the sporulating cell, and offer insight into the roles of the prespore and the mother cell at different times of spore morphogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27493-0
2005-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510399.html?itemId=/content/journal/micro/10.1099/mic.0.27493-0&mimeType=html&fmt=ahah

References

  1. Abanes-De Mello A., Sun Y. L., Aung S., Pogliano K. 2002; A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes Dev 16:3253–3264 [CrossRef]
    [Google Scholar]
  2. Aizawa S. I., Zhulin I. B., Marquez-Magana L. M., Ordal G. W. 2002; Chemotaxis and motility. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp 437–452 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Amaya E., Khvorova A., Piggot P. J. 2001; Analysis of promoter recognition in vivo directed by σF of Bacillus subtilis by using random-sequence oligonucleotides. J Bacteriol 183:3623–3630 [CrossRef]
    [Google Scholar]
  4. Bagyan I., Hobot J., Cutting S. 1996; A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J Bacteriol 178:4500–4507
    [Google Scholar]
  5. Bagyan I., Casillas-Martinez L., Setlow P. 1998; The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by σF, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J Bacteriol 180:2057–2062
    [Google Scholar]
  6. Beall B., Driks A., Losick R., Moran C. P. Jr 1993; Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J Bacteriol 175:1705–1716
    [Google Scholar]
  7. Beall B., Moran C. P. Jr 1994; Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation. J Bacteriol 176:2003–2012
    [Google Scholar]
  8. Behravan J., Chirakkal H., Masson A., Moir A. 2000; Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J Bacteriol 182:1987–1994 [CrossRef]
    [Google Scholar]
  9. Boland F. M., Atrih A., Chirakkal H., Foster S. J., Moir A. 2000; Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146:57–64
    [Google Scholar]
  10. Boschwitz H., Yudkin M. 1983; The pattern of protein synthesis in spoIVC mutants of Bacillus subtilis resuspended in sporulation medium. J Gen Microbiol 129:3211–3214
    [Google Scholar]
  11. Bryan E. M., Beall B. W., Moran C. P. Jr 1996; A σE dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. J Bacteriol 178:4778–4786
    [Google Scholar]
  12. Burbulys D., Trach K. A., Hoch J. A. 1991; Initiation of sporulation in Bacillus subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552 [CrossRef]
    [Google Scholar]
  13. Cabrera-Hernandez A., Setlow P. 2000; Analysis of the regulation and function of five genes encoding small, acid-soluble spore proteins of Bacillus subtilis. Gene 248:169–181 [CrossRef]
    [Google Scholar]
  14. Cabrera-Hernandez A., Sanchez-Salas J. L., Paidhungat M., Setlow P. 1999; Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 232:1–10 [CrossRef]
    [Google Scholar]
  15. Corfe B. M., Sammons R. L., Smith D. A., Mauel C. 1994; The gerB region of the Bacillus subtilis 168 chromosome encodes a homologue of the gerA spore germination operon. Microbiology 140:471–478 [CrossRef]
    [Google Scholar]
  16. Costa T., Steil L., Martins L. O., Henriques A. O, Völker U. 2004; Assembly of an oxalate decarboxylase produced under σK control into the Bacillus subtilis spore coat. J Bacteriol 186:1462–1474 [CrossRef]
    [Google Scholar]
  17. Cutting S., Oke V., Driks A., Losick R., Lu S., Kroos L. 1990; A forespore checkpoint for mother cell gene expression during development in Bacillus subtilis. Cell 62:239–250 [CrossRef]
    [Google Scholar]
  18. Cutting S., Driks A., Schmidt R., Kunkel B., Losick R. 1991a; Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-σK processing in Bacillus subtilis. Genes Dev 5:456–466 [CrossRef]
    [Google Scholar]
  19. Cutting S., Roels S., Losick R. 1991b; Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J Mol Biol 221:1237–1256 [CrossRef]
    [Google Scholar]
  20. Cutting S., Zheng L. B., Losick R. 1991c; Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis. J Bacteriol 173:2915–2919
    [Google Scholar]
  21. Daniel R. A., Drake S., Buchanan C. E., Scholle R., Errington J. 1994; The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J Mol Biol 235:209–220 [CrossRef]
    [Google Scholar]
  22. Donovan W., Zheng L. B., Sandman K., Losick R. 1987; Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol 196:1–10 [CrossRef]
    [Google Scholar]
  23. Driks A. 1999; Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20
    [Google Scholar]
  24. Driks A., Roels S., Beall B., Moran C. P., Losick R. Jr 1994; Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev 8:234–244 [CrossRef]
    [Google Scholar]
  25. Duc L. H., Hong H. A., Barbosa T. M., Henriques A. O., Cutting S. M. 2004; Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70:2161–2171 [CrossRef]
    [Google Scholar]
  26. Eichenberger P., Fawcett P., Losick R. 2001; A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol Microbiol 42:1147–1162
    [Google Scholar]
  27. Eichenberger P., Jensen S. T., Conlon E. M. 8 other authors 2003; The σE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327:945–972 [CrossRef]
    [Google Scholar]
  28. Eichenberger P., Fujita M., Jensen S. T. 8 other authors 2004; The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2:E328 http://www.plosbiology.org [CrossRef]
    [Google Scholar]
  29. Errington J. 2003; Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126 [CrossRef]
    [Google Scholar]
  30. Fajardo-Cavazos P., Nicholson W. L. 2000; The TRAP-like SplA protein is a trans-acting negative regulator of spore photoproduct lyase synthesis during Bacillus subtilis sporulation. J Bacteriol 182:555–560 [CrossRef]
    [Google Scholar]
  31. Fawcett P., Eichenberger P., Losick R., Youngman P. 2000; The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 97:8063–8068 [CrossRef]
    [Google Scholar]
  32. Feavers I. M., Foulkes J., Setlow B., Sun D., Nicholson W., Setlow P., Moir A. 1990; The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Mol Microbiol 4:275–282 [CrossRef]
    [Google Scholar]
  33. Feucht A., Evans L., Errington J. 2003; Identification of sporulation genes by genome-wide analysis of the σE regulon of Bacillus subtilis . Microbiology 149:3023–3034 [CrossRef]
    [Google Scholar]
  34. Foulger D., Errington J. 1991; Sequential activation of dual promoters by different sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis. Mol Microbiol 5:1363–1373 [CrossRef]
    [Google Scholar]
  35. Frandsen N., Stragier P. 1995; Identification and characterization of the Bacillus subtilis spoIIP locus. J Bacteriol 177:716–722
    [Google Scholar]
  36. Fujita M. 2000; Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis. Genes Cells 5:79–88 [CrossRef]
    [Google Scholar]
  37. Fukushima T., Yamamoto H., Atrih A., Foster S. J., Sekiguchi J. 2002; A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. J Bacteriol 184:6007–6015 [CrossRef]
    [Google Scholar]
  38. Fukushima T., Ishikawa S., Yamamoto H., Ogasawara N., Sekiguchi J. 2003; Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. J Biochem (Tokyo) 133:475–483 [CrossRef]
    [Google Scholar]
  39. Gomez M., Cutting S. M. 1996; Expression of the Bacillus subtilis spoIVB gene is under dualσF/σG control. Microbiology 142:3453–3457 [CrossRef]
    [Google Scholar]
  40. Gomez M., Cutting S. M. 1997; BofC encodes a putative forespore regulator of the Bacillus subtilis σK checkpoint. Microbiology 143:157–170 [CrossRef]
    [Google Scholar]
  41. Halberg R., Kroos L. 1994; Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J Mol Biol 243:425–436 [CrossRef]
    [Google Scholar]
  42. Haldenwang W. G. 1995; The sigma factors of Bacillus subtilis. Microbiol Rev 59:1–30
    [Google Scholar]
  43. Helmann J. D., Moran C. P. Jr 2002; RNA polymerase and sigma factors. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp 289–312 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Henriques A. O., Moran C. P. Jr 2000; Structure and assembly of the bacterial endospore coat. Methods 20:95–110 [CrossRef]
    [Google Scholar]
  45. Henriques A. O., de Lencastre H., Piggot P. J. 1992; A Bacillus subtilis morphogene cluster that includes spoVE is homologous to themra region of Escherichia coli . Biochimie 74:735–748 [CrossRef]
    [Google Scholar]
  46. Henriques A. O., Beall B. W., Roland K., Moran C. P. Jr 1995; Characterization of cotJ, a σE-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J Bacteriol 177:3394–3406
    [Google Scholar]
  47. Henriques A. O., Bryan E. M., Beall B. W., Moran C. P. Jr 1997; cse15, cse60, and csk22are new members of mother-cell-specific sporulation regulons in Bacillus subtilis. J Bacteriol 179:389–398
    [Google Scholar]
  48. Hilbert D. W., Piggot P. J. 2004; Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68:234–262 [CrossRef]
    [Google Scholar]
  49. Illing N., Errington J. 1991; The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the σE form of RNA polymerase. Mol Microbiol 5:1927–1940 [CrossRef]
    [Google Scholar]
  50. Karow M. L., Piggot P. J. 1995; Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163:69–74 [CrossRef]
    [Google Scholar]
  51. Karow M. L., Glaser P., Piggot P. J. 1995; Identification of a gene spoIIR, that links the activation of σE to the transcriptional activity of σF during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 922012–2016 [CrossRef]
    [Google Scholar]
  52. Kellner E. M., Decatur A., Moran C. P. Jr 1996; Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol Microbiol 21:913–924 [CrossRef]
    [Google Scholar]
  53. Kemp E. H., Sammons R. L., Moir A., Sun D., Setlow P. 1991; Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. J Bacteriol 173:4646–4652
    [Google Scholar]
  54. Khvorova A., Chary V. K., Hilbert D. W., Piggot P. J. 2000; The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J Bacteriol 182:4425–4429 [CrossRef]
    [Google Scholar]
  55. Kobayashi K., Kumazawa Y., Miwa K., Yamanaka S. 1996; [ε]-([γ]-Glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol Lett 144:157–160
    [Google Scholar]
  56. Kobayashi K., Hashiguchi K., Yokozeki K., Yamanaka S. 1998; Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli . Biosci Biotechnol Biochem 62:1109–1114 [CrossRef]
    [Google Scholar]
  57. Kroos L., Kunkel B., Losick R. 1989; Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243:526–529 [CrossRef]
    [Google Scholar]
  58. Kunkel B., Kroos L., Poth H., Youngman P., Losick R. 1989; Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis.. Genes Dev 3:1735–1744 [CrossRef]
    [Google Scholar]
  59. Kunst F., Ogasawara N., Moszer I. & 148 other authors; 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  60. Kuwana R., Kasahara Y., Fujibayashi M., Takamatsu H., Ogasawara N., Watabe K. 2002; Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148:3971–3982
    [Google Scholar]
  61. Kuwana R., Yamamura S., Ikejiri H., Kobayashi K., Ogasawara N., Asai K., Sadaie Y., Takamatsu H., Watabe K. 2003; Bacillus subtilis spoVIF (yjcC) gene, involved in coat assembly and spore resistance. Microbiology 149:3011–3021 [CrossRef]
    [Google Scholar]
  62. Lai E. M., Phadke N. D., Kachman M. T., Giorno R., Vazquez S., Vazquez J. A., Maddock J. R., Driks A. 2003; Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis . J Bacteriol 185:1443–1454 [CrossRef]
    [Google Scholar]
  63. Li Z., Piggot P. J. 2001; Development of a two-part transcription probe to determine the completeness of temporal and spatial compartmentalization of gene expression during bacterial development. Proc Natl Acad Sci U S A 98:12538–12543 [CrossRef]
    [Google Scholar]
  64. Londono-Vallejo J. A., Stragier P. 1995; Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev 9:503–508 [CrossRef]
    [Google Scholar]
  65. Londono-Vallejo J. A., Frehel C., Stragier P. 1997; SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol Microbiol 24:29–39 [CrossRef]
    [Google Scholar]
  66. Lopez-Diaz I., Clarke S., Mandelstam J. 1986; spoIID operon of Bacillus subtilis: cloning and sequence. J Gen Microbiol 132:341–354
    [Google Scholar]
  67. Losick R., Pero J. 1981; Cascades of sigma factors. Cell 25:582–584 [CrossRef]
    [Google Scholar]
  68. Mason J. M., Setlow P. 1987; Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores. J Bacteriol 169:3633–3637
    [Google Scholar]
  69. Mason J. M., Hackett R. H., Setlow P. 1988; Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. J Bacteriol 170:239–244
    [Google Scholar]
  70. Moir A., Corfe B. M., Behravan J. 2002; Spore germination. Cell Mol Life Sci 59:403–409 [CrossRef]
    [Google Scholar]
  71. Moldover B., Cao L., Piggot P. J. 1994; Identification of a control region for expression of the forespore-specific Bacillus subtilis locus spoVA. Microbiology 140:2299–2304 [CrossRef]
    [Google Scholar]
  72. Naclerio G., Baccigalupi L., Zilhao R., De Felice M., Ricca E. 1996; Bacillus subtilis spore coat assembly requires cotH gene expression. J Bacteriol 178:4375–4380
    [Google Scholar]
  73. Nicholson W. L., Setlow P. 1990; Sporulation, germination and outgrowth. In Molecular Biology Methods for Bacillus pp 391–450 Edited by Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  74. Nugroho F. A., Yamamoto H., Kobayashi Y., Sekiguchi J. 1999; Characterization of a new σK-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J Bacteriol 181:6230–6237
    [Google Scholar]
  75. Ohashi Y., Inaoka T., Kasai K., Ito Y., Okamoto S., Satsu H., Tozawa Y., Kawamura F., Ochi K. 2003; Expression profiling of translation-associated genes in sporulating Bacillus subtilis and consequence of sporulation by gene inactivation. Biosci Biotechnol Biochem 67:2245–2253 [CrossRef]
    [Google Scholar]
  76. Oke V., Losick R. 1993; Multilevel regulation of the sporulation transcription factor σK in Bacillus subtilis . J Bacteriol 175:7341–7347
    [Google Scholar]
  77. Ozin A. J., Henriques A. O., Yi H., Moran C. P. Jr 2000; Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J Bacteriol 182:1828–1833 [CrossRef]
    [Google Scholar]
  78. Pan Q., Losick R., Rudner D. Z. 2003; A second PDZ-containing serine protease contributes to activation of the sporulation transcription factor σK in Bacillus subtilis . J Bacteriol 185:6051–6056 [CrossRef]
    [Google Scholar]
  79. Panzer S., Losick R., Sun D., Setlow P. 1989; Evidence for an additional temporal class of gene expression in the forespore compartment of sporulating Bacillus subtilis. J Bacteriol 171:561–564
    [Google Scholar]
  80. Partridge S. R., Errington J. 1993; The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol 8:945–955 [CrossRef]
    [Google Scholar]
  81. Pedraza-Reyes M., Gutierrez-Corona F., Nicholson W. L. 1997; Spore photoproduct lyase operon (splAB) regulation during Bacillus subtilis sporulation: modulation of splBlacZ fusion expression by P1 promoter mutations and by an in-frame deletion ofsplA . Curr Microbiol 34:133–137 [CrossRef]
    [Google Scholar]
  82. Phillips Z. E., Strauch M. A. 2002; Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59:392–402 [CrossRef]
    [Google Scholar]
  83. Piggot P. J., Coote J. G. 1976; Genetic aspects of bacterial endospore formation. Bacteriol Rev 40:908–962
    [Google Scholar]
  84. Piggot P. J., Losick R. 2002; Sporulation genes and intercomparmental regulation. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp 483–518 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  85. Pogliano J., Osborne N., Sharp M. D., Abanes-De Mello A., Perez A., Sun Y. L., Pogliano K. 1999; A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol Microbiol 31:1149–1159 [CrossRef]
    [Google Scholar]
  86. Popham D. L., Illades-Aguiar B., Setlow P. 1995; The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J Bacteriol 177:4721–4729
    [Google Scholar]
  87. Popham D. L., Gilmore M. E., Setlow P. 1999; Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J Bacteriol 181:126–132
    [Google Scholar]
  88. Ragkousi K., Setlow P. 2004; Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186:5567–5575 [CrossRef]
    [Google Scholar]
  89. Ramirez M. I., Castellanos-Juarez F. X., Yasbin R. E., Pedraza-Reyes M. 2004; The ytkD (mutTA) gene of Bacillus subtilis encodes a functional antimutator 8-oxo-(dGTP/GTP)ase and is under dual control ofσA and σF RNA polymerases. J Bacteriol 186:1050–1059 [CrossRef]
    [Google Scholar]
  90. Roels S., Losick R. 1995; Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J Bacteriol 177:6263–6275
    [Google Scholar]
  91. Rong S., Rosenkrantz M. S., Sonenshein A. L. 1986; Transcriptional control of the Bacillus subtilis spoIID gene. J Bacteriol 165:771–779
    [Google Scholar]
  92. Sacco M., Ricca E., Losick R., Cutting S. 1995; An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J Bacteriol 177:372–377
    [Google Scholar]
  93. Sandman K., Losick R., Youngman P. 1987; Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated insertional mutagenesis. Genetics 117:603–617
    [Google Scholar]
  94. Sato T., Harada K., Ohta Y., Kobayashi Y. 1994; Expression of the Bacillus subtilis spoIVCA gene, which encodes a site-specific recombinase, depends on thespoIIGB product. J Bacteriol 176:935–937
    [Google Scholar]
  95. Scharf C., Riethdorf R., Ernst H., Engelmann S., Völker U., Hecker M. 1998; Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J Bacteriol 180:1869–1877
    [Google Scholar]
  96. Schuch R., Piggot P. J. 1994; The dacFspoIIA operon of Bacillus subtilis, encoding σF, is autoregulated. J Bacteriol 176:4104–4110
    [Google Scholar]
  97. Sciochetti S. A., Piggot P. J., Sherratt D. J., Blakely G. 1999; The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J Bacteriol 181:6053–6062
    [Google Scholar]
  98. Serrano M., Hövel S., Moran C. P. Jr, Henriques A. O, Völker U. 2001; Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 183:2995–3003 [CrossRef]
    [Google Scholar]
  99. Serrano M., Neves A., Soares C. M., Moran C. P. Jr, Henriques A. O. 2004; Role of the anti-sigma factor SpoIIAB in regulation of σG during Bacillus subtilis sporulation. J Bacteriol 186:4000–4013 [CrossRef]
    [Google Scholar]
  100. Setlow P. 1995; Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol 49:29–54 [CrossRef]
    [Google Scholar]
  101. Setlow P. 2003; Spore germination. Curr Opin Microbiol 6:550–556 [CrossRef]
    [Google Scholar]
  102. Smith K., Youngman P. 1993; Evidence that the spoIIM gene of Bacillus subtilis is transcribed by RNA polymerase associated withσE. J Bacteriol 175:3618–3627
    [Google Scholar]
  103. Smith K., Bayer M. E., Youngman P. 1993; Physical and functional characterization of the Bacillus subtilis spoIIM gene. J Bacteriol 175:3607–3617
    [Google Scholar]
  104. Sonenshein A. L. 2000; Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3:561–566 [CrossRef]
    [Google Scholar]
  105. Steil L., Hoffmann T., Budde I., Völker U., Bremer E. 2003; Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185:6358–6370 [CrossRef]
    [Google Scholar]
  106. Stevens C. M., Errington J. 1990; Differential gene expression during sporulation in Bacillus subtilis: structure and regulation of the spoIIID gene. Mol Microbiol 4:543–551 [CrossRef]
    [Google Scholar]
  107. Stragier P., Losick R. 1996; Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:297–341 [CrossRef]
    [Google Scholar]
  108. Stragier P., Bonamy C., Karmazyn-Campelli C. 1988; Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52:697–704 [CrossRef]
    [Google Scholar]
  109. Sun D. X., Stragier P., Setlow P. 1989; Identification of a new sigma-factor involved in compartmentalized gene expression during sporulation of Bacillus subtilis. Genes Dev 3:141–149 [CrossRef]
    [Google Scholar]
  110. Sun D. X., Cabrera-Martinez R. M., Setlow P. 1991; Control of transcription of the Bacillus subtilis gene, which codes for the forespore-specific transcription factorσG. J Bacteriol 173:2977–2984
    [Google Scholar]
  111. Sun Y. L., Sharp M. D., Pogliano K. 2000; A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J Bacteriol 182:2919–2927 [CrossRef]
    [Google Scholar]
  112. Sussman M. D., Setlow P. 1991; Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination. J Bacteriol 173:291–300
    [Google Scholar]
  113. Takamatsu H., Kodama T., Watabe K. 1999; Assembly of the CotSA coat protein into spores requires CotS in Bacillus subtilis. FEMS Microbiol Lett 174:201–206 [CrossRef]
    [Google Scholar]
  114. Tovar-Rojo F., Chander M., Setlow B., Setlow P. 2002; The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. J Bacteriol 184:584–587 [CrossRef]
    [Google Scholar]
  115. Urtiz-Estrada N., Salas-Pacheco J. M., Yasbin R. E., Pedraza-Reyes M. 2003; Forespore-specific expression of Bacillus subtilis yqfS, which encodes type IV apurinic/apyrimidinic endonuclease, a component of the base excision repair pathway. J Bacteriol 185:340–348 [CrossRef]
    [Google Scholar]
  116. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmid R., Mach H., Hecker M. 1994; Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752 [CrossRef]
    [Google Scholar]
  117. Völker U., Völker A., Maul B., Hecker M., Dufour A., Haldenwang W. G. 1995; Separate mechanisms activate σB of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol 177:3771–3780
    [Google Scholar]
  118. Wakeley P., Hoa N. T., Cutting S. 2000; BofC negatively regulates SpoIVB-mediated signalling in the Bacillus subtilis sigma K-checkpoint. Mol Microbiol 36:1415–1424
    [Google Scholar]
  119. Wu L. J., Errington J. 1998; Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol Microbiol 27:777–786 [CrossRef]
    [Google Scholar]
  120. Wu L. J., Errington J. 2000; Identification and characterization of a new prespore-specific regulatory gene, rsfA, of Bacillus subtilis . J Bacteriol 182:418–424 [CrossRef]
    [Google Scholar]
  121. Wu L. J., Errington J. 2003; RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 49:1463–1475 [CrossRef]
    [Google Scholar]
  122. Wu J. J., Schuch R., Piggot P. J. 1992; Characterization of a Bacillus subtilis sporulation operon that includes genes for an RNA polymerase sigma factor and for a putative DD-carboxypeptidase. J Bacteriol 174:4885–4892
    [Google Scholar]
  123. Zhang J., Fitz-James P. C., Aronson A. I. 1993; Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol 175:3757–3766
    [Google Scholar]
  124. Zhang J., Ichikawa H., Halberg R., Kroos L., Aronson A. I. 1994; Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. J Mol Biol 240:405–415 [CrossRef]
    [Google Scholar]
  125. Zheng L. B., Losick R. 1990; Cascade regulation of spore coat gene expression in Bacillus subtilis. J Mol Biol 212:645–660 [CrossRef]
    [Google Scholar]
  126. Zheng L. B., Donovan W. P., Fitz-James P. C., Losick R. 1988; Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev 2:1047–1054 [CrossRef]
    [Google Scholar]
  127. Zupancic M. L., Tran H., Hofmeister A. E. 2001; Chromosomal organization governs the timing of cell type-specific gene expression required for spore formation in Bacillus subtilis. Mol Microbiol 39:1471–1481 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27493-0
Loading
/content/journal/micro/10.1099/mic.0.27493-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Supplementary material 6

PDF

Supplementary material 7

PDF

Supplementary material 8

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error