1887

Abstract

Reactive oxidants are a primary weapon of the macrophage antibacterial arsenal. The ability of virulent to repair oxidative DNA lesions via the base-excision repair system (BER) enables its survival and replication within the macrophage, but is not required for extracellular growth. also inhibits the targeting of oxidant generators to the -containing vacuole (SCV) via Pathogenicity Island 2 (SPI2). Accordingly, the relative contributions of these two discrete systems to resistance to both oxidative mutagenesis and lethality within RAW 264.7 macrophages were investigated. A mutant unable to initiate BER was constructed by deleting all three BER bifunctional glycosylases (Δ//), and was significantly impaired for early intramacrophage survival. Mutations in various SPI2 effector ( and ) and structural () genes were then analysed in the BER mutant background. Loss of SPI2 function alone appeared to increase macrophage-induced mutation. Statistical analyses of the reduced intramacrophage survival of SPI2 mutants and the corresponding SPI2/BER mutants indicated a synergistic interaction between BER and SPI2, suggesting that SPI2 promotes intramacrophage survival by protecting DNA from exposure to macrophage oxidants. Furthermore, this protection may involve the SseF and SseG effectors. In contrast, the SifA effector did not seem to play a major role in oxidant protection. It is speculated that initially stalls oxidative killing by preserving its genomic integrity through the function of BER, until it can upregulate SPI2 to limit its exposure to macrophage oxidants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27555-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510557.html?itemId=/content/journal/micro/10.1099/mic.0.27555-0&mimeType=html&fmt=ahah

References

  1. Babior B. M. 2000; Phagocytes and oxidative stress. Am J Med 109:33–44 [CrossRef]
    [Google Scholar]
  2. Beuzón C. R., Meresse S., Unsworth K. E., Ruiz-Albert J., Garvis S., Waterman S. R., Ryder T. A., Boucrot E., Holden D. W. 2000; Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249 [CrossRef]
    [Google Scholar]
  3. Beuzón C. R., Salcedo S. P., Holden D. W. 2002; Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148:2705–2715
    [Google Scholar]
  4. Blaisdell J. O., Wallace S. S. 2001; Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. Proc Natl Acad Sci U S A 98:7426–7430 [CrossRef]
    [Google Scholar]
  5. Buchmeier N. A., Lipps C. J., So M. Y., Heffron F. 1993; Recombination deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol Microbiol 7:933–936 [CrossRef]
    [Google Scholar]
  6. Buchmeier N. A., Libby S. J., Xu Y., Loewen P. C., Switala J., Guiney D. G. 1995; DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95:1047–1053 [CrossRef]
    [Google Scholar]
  7. Campoy S., Perez de Rozas A. M., Barbe J., Badiola I. 2000; Virulence and mutation rates of Salmonella typhimurium strains with increased mutagenic strength in a mouse model. FEMS Microbiol Lett 187:145–150 [CrossRef]
    [Google Scholar]
  8. Chakravortty D., Hansen-Wester I., Hensel M. 2002; Salmonella Pathogenicity Island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166 [CrossRef]
    [Google Scholar]
  9. Dai S., Zhou D. 2004; Secretion and function of Salmonella SPI-2 effector SseF require its chaperone, SscB. J Bacteriol 186:5078–5086 [CrossRef]
    [Google Scholar]
  10. Damiani G., Kiyotaki C., Soeller W., Sasada M., Peisach J., Bloom B. R. 1980; Macrophage variants in oxygen metabolism. J Exp Med 152:808–822 [CrossRef]
    [Google Scholar]
  11. Drecktrah D., Knodler L. A., Galbraith K., Steele-Mortimer O. 2005; The Salmonella SPI1 effector SopB stimulates nitric oxide production long after invasion. Cell Microbiol in press). doi: 10.1111/j.1462-5822.2004.00436.x
    [Google Scholar]
  12. Eisen J. A., Hanawalt P. C. 1999; A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435:171–213 [CrossRef]
    [Google Scholar]
  13. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C. D. 2003a; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol 47:103–118
    [Google Scholar]
  14. Eriksson S., Chambers B. J., Rhen M. 2003b; Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv. Typhimurium. Scand J Immunol 58:493–502 [CrossRef]
    [Google Scholar]
  15. Fang F. C., DeGroote M. A., Foster J. W. 8 other authors 1999; Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A 96:7502–7507 [CrossRef]
    [Google Scholar]
  16. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. 1986; Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83:5189–5193 [CrossRef]
    [Google Scholar]
  17. Figueroa-Bossi N., Uzzau S., Maloriol D., Bossi L. 2001; Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39:260–271 [CrossRef]
    [Google Scholar]
  18. Gallois A., Klein J. R., Allen L. A., Jones B. D., Nauseef W. M. 2001; Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166:5741–5748 [CrossRef]
    [Google Scholar]
  19. Garmendia J., Beuzon C. R., Ruiz-Albert J., Holden D. W. 2003; The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology 149:2385–2396 [CrossRef]
    [Google Scholar]
  20. Guy R. L., Gonias L. A., Stein M. A. 2000; Aggregation of host endosomes by Salmonella requires SPI2 translocation of SseFG and involves SpvR and the fms-aroE intragenic region. Mol Microbiol 37:1417–1435 [CrossRef]
    [Google Scholar]
  21. Hensel M., Shea J. E., Waterman S. R. & 7 other authors; 1998; Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30:163–174 [CrossRef]
    [Google Scholar]
  22. Holden D. W. 2002; Trafficking of the Salmonella vacuole in macrophages. Traffic 3:161–169 [CrossRef]
    [Google Scholar]
  23. Linehan S. A., Holden D. W. 2003; The interplay between Salmonella typhimurium and its macrophage host – what can it teach us about innate immunity?. Immunol Lett 85:183–192 [CrossRef]
    [Google Scholar]
  24. Marnett L. J., Riggins J. N., West J. D. 2003; Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 111:583–593 [CrossRef]
    [Google Scholar]
  25. Miao E. A., Miller S. I. 2000; A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci U S A 97:7539–7544 [CrossRef]
    [Google Scholar]
  26. Mizrahi V., Andersen S. J. 1998; DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence?. Mol Microbiol 29:1331–1339 [CrossRef]
    [Google Scholar]
  27. Nathan C., Shiloh M. U. 2000; Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97:8841–8848 [CrossRef]
    [Google Scholar]
  28. O'Rourke E. J., Chevalier C., Pinto A. V., Thiberge J. M., Ielpi L., Labigne A., Radicella J. P. 2003; Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci U S A 100:2789–2794 [CrossRef]
    [Google Scholar]
  29. Richter-Dahlfors A., Buchan A. M. J., Finlay B. B. 1997; Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo . J Exp Med 186:569–580 [CrossRef]
    [Google Scholar]
  30. Robbe-Saule V., Coynault C., Ibanez-Ruiz M., Hermant D., Norel F. 2001; Identification of a non-haem catalase in Salmonella and its regulation by RpoS (σS. Mol Microbiol 39:1533–1545 [CrossRef]
    [Google Scholar]
  31. Rosenberg S. M. 2001; Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515
    [Google Scholar]
  32. Rosenberger C. M., Finlay B. B. 2002; Macrophages inhibit Salmonella Typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 277:18753–18762 [CrossRef]
    [Google Scholar]
  33. Rosenberger C. M., Gallo R. L., Finlay B. B. 2004; Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci U S A 101:2422–2427 [CrossRef]
    [Google Scholar]
  34. Salcedo S. P., Holden D. W. 2003; SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J 22:5003–5014 [CrossRef]
    [Google Scholar]
  35. Schapiro J. M., Libby S. J., Fang F. C. 2003; Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci U S A 100:8496–8501 [CrossRef]
    [Google Scholar]
  36. Schlosser-Silverman E., Elgrably-Weiss M., Rosenshine I., Kohen R., Altuvia S. 2000; Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J Bacteriol 182:5225–5230 [CrossRef]
    [Google Scholar]
  37. Schmieger H. 1972; Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119:75–88 [CrossRef]
    [Google Scholar]
  38. Stein M. A., Leung K. Y., Zwick M., Garcia-del Portillo F., Finlay B. B. 1996; Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20:151–164 [CrossRef]
    [Google Scholar]
  39. Suvarnapunya A. E., Zurawski D. V., Guy R. L., Stein M. A. 2003a; Molecular characterization of the prototrophic Salmonella mutants defective for intraepithelial replication. Infect Immun 71:2247–2252 [CrossRef]
    [Google Scholar]
  40. Suvarnapunya A. E., Stein M. A, Lagassé H. A. D. 2003b; The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol Microbiol 48:549–559 [CrossRef]
    [Google Scholar]
  41. Vazquez-Torres A., Xu Y., Jones-Carson J., Holden D. W., Lucia S. M., Dinauer M. C., Mastroeni P., Fang F. C. 2000a; Salmonella Pathogenicity Island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658 [CrossRef]
    [Google Scholar]
  42. Vazquez-Torres A., Jones-Carson J., Mastroeni P., Ischiropoulos H., Fang F. C. 2000b; Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236 [CrossRef]
    [Google Scholar]
  43. Vodovotz Y., Russell D., Xie Q. W., Bogdan C., Nathan C. 1995; Vesicle membrane association of nitric oxide synthase in primary mouse macrophages. J Immunol 154:2914–2925
    [Google Scholar]
  44. Wallace S. S. 1997; Oxidative damage to DNA and its repair. In Oxidative Stress and the Molecular Biology of Antioxidant Defenses pp 49–90 Edited by Scandalios J. G. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Webb J. L., Harvey M. W., Holden D. W., Evans T. J. 2001; Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun 69:6391–6400 [CrossRef]
    [Google Scholar]
  46. Wright B. E. 2004; Stress-directed adaptive mutations and evolution. Mol Microbiol 52:643–650 [CrossRef]
    [Google Scholar]
  47. Zahrt T. C., Buchmeier N., Maloy S. 1999; Effect of mutS and recD mutations on Salmonella virulence. Infect Immun 67:6168–6172
    [Google Scholar]
  48. Zurawski D. V., Stein M. A. 2003; SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island 2 translocon. Mol Microbiol 47:1341–1351 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27555-0
Loading
/content/journal/micro/10.1099/mic.0.27555-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error