1887

Abstract

Genes encoding eukaryotic-type protein kinases and phosphatases are present in many bacterial genomes. An ORF encoding a polypeptide with homology to protein phosphatases 2C (PP2Cs) was identified in the genomes of serovar Typhi strains CT18 and Ty2. This protein, termed PrpZ, is the first PP2C to be identified in enterobacteria. Analysis of the amino acid sequence revealed two distinct domains: the N-terminal segment containing motifs of the catalytic domain of PP2Cs and the C-terminal segment with unknown function. PrpZ was expressed in as a histidine-tagged fusion protein (PrpZ) and the purified protein was analysed for its ability to dephosphorylate various substrates. Using -nitrophenyl phosphate as a substrate, optimal PrpZ activity was observed at pH 9·5, with a strong preference for Mn over Mg. Activity of PrpZ was inhibited by EDTA, sodium fluoride, sodium phosphate and sodium pyrophosphate but unaffected by okadaic acid, indicating that PrpZ is a PP2C. Using synthetic phosphopeptides as substrates, PrpZ could hydrolyse phosphorylated serine, threonine or tyrosine residues, with the highest catalytic efficiency ( / ) for the threonine phosphopeptide. With phosphorylated myelin basic protein (MBP) as the substrate, Mn was only twofold more efficient than Mg in stimulating PrpZ activity at pH 8·0. The ability of PrpZ to remove the phosphoryl group from phosphotyrosine residues was confirmed by measuring the release of inorganic phosphate from phospho-Tyr MBP. Together, these data indicate that PrpZ has all the features of a PP2C with dual substrate specificity .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27585-0
2005-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511159.html?itemId=/content/journal/micro/10.1099/mic.0.27585-0&mimeType=html&fmt=ahah

References

  1. Barford D., Das A. K., Egloff M. P. 1998; The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164 [CrossRef]
    [Google Scholar]
  2. Barik S. 1993; Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda. Proc Natl Acad Sci U S A 90:10633–10637 [CrossRef]
    [Google Scholar]
  3. Bliska J. B., Guan K. L., Dixon J. E., Falkow S. 1991; Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A 88:1187–1191 [CrossRef]
    [Google Scholar]
  4. Boitel B., Ortiz-Lombardia M., Duran R., Pompeo F., Cole S. T., Cervenansky C., Alzari P. M. 2003; PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol Microbiol 49:1493–1508 [CrossRef]
    [Google Scholar]
  5. Bork P., Brown N. P., Hegyi H., Schultz J. 1996; The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci 5:1421–1425 [CrossRef]
    [Google Scholar]
  6. Chopra P., Singh B., Singh R. 9 other authors 2003; Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB. Biochem Biophys Res Commun 311:112–120 [CrossRef]
    [Google Scholar]
  7. Cohen P. 1989; The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508 [CrossRef]
    [Google Scholar]
  8. Das A. K., Helps N. R., Cohen P. T., Barford D. 1996; Crystal structure of the protein serine/threonine phosphatase 2C at 2·0 Å resolution. EMBO J 15:6798–6809
    [Google Scholar]
  9. Deng W., Liou S. R., Mayhew G. F., Rose D. J., Burland V., Kodoyianni V., Schwartz D. C., Blattner F. R, Plunkett G. III 2003; Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185:2330–2337 [CrossRef]
    [Google Scholar]
  10. Doublet P., Vincent C., Grangeasse C., Cozzone A. J., Duclos B. 1999; On the binding of ATP to the autophosphorylating protein, Ptk, of the bacterium Acinetobacter johnsonii. FEBS Lett 445:137–143 [CrossRef]
    [Google Scholar]
  11. Duncan L., Alper S., Arigoni F., Losick R., Stragier P. 1995; Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641–644 [CrossRef]
    [Google Scholar]
  12. Finney L. A., O'Halloran T. V. 2003; Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936 [CrossRef]
    [Google Scholar]
  13. Fu Y., Galan J. E. 1999; A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297 [CrossRef]
    [Google Scholar]
  14. Hunter T. 1995; Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236 [CrossRef]
    [Google Scholar]
  15. Irmler A., Forchhammer K. 2001; A PP2C-type phosphatase dephosphorylates the PII signaling protein in the cyanobacterium Synechocystis PCC 6803. Proc Natl Acad Sci U S A 98:12978–12983 [CrossRef]
    [Google Scholar]
  16. Iwanicki A., Herman-Antosiewicz A., Pierechod M., Seror S. J., Obuchowski M. 2002; PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity. Biochem J 366:929–936
    [Google Scholar]
  17. Kehres D. G., Maguire M. E. 2003; Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27:263–290 [CrossRef]
    [Google Scholar]
  18. Kennelly P. J. 2002; Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett 206:1–8 [CrossRef]
    [Google Scholar]
  19. Kennelly P. J. 2003; Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 370:373–389 [CrossRef]
    [Google Scholar]
  20. LaPorte D. C., Stueland C. S., Ikeda T. P. 1989; Isocitrate dehydrogenase kinase/phosphatase. Biochimie 71:1051–1057 [CrossRef]
    [Google Scholar]
  21. Li H. C. 1984; Activation of brain calcineurin phosphatase towards nonprotein phosphoesters by Ca2+, calmodulin, and Mg2+. J Biol Chem 259:8801–8807
    [Google Scholar]
  22. McClelland M., Sanderson K. E., Spieth J. 23 other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef]
    [Google Scholar]
  23. Missiakas D., Raina S. 1997; Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli: role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J 16:1670–1685 [CrossRef]
    [Google Scholar]
  24. Mukhopadhyay S., Kapatral V., Xu W., Chakrabarty A. M. 1999; Characterization of a Hank's type serine/threonine kinase and serine/threonine phosphoprotein phosphatase in Pseudomonas aeruginosa. J Bacteriol 181:6615–6622
    [Google Scholar]
  25. Muñoz-Dorado J., Inouye S., Inouye M. 1991; A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67:995–1006 [CrossRef]
    [Google Scholar]
  26. Obuchowski M., Madec E., Delattre D., Boel G., Iwanicki A., Foulger D., Seror S. J. 2000; Characterization of PrpC from Bacillus subtilis, a member of the PPM phosphatase family. J Bacteriol 182:5634–5638 [CrossRef]
    [Google Scholar]
  27. Parkhill J., Dougan G., James K. D. 38 other authors 2001; Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852 [CrossRef]
    [Google Scholar]
  28. Porwollik S., Frye J., Florea L. D., Blackmer F., McClelland M. 2003; A non-redundant microarray of genes for two related bacteria. Nucleic Acids Res 31:1869–1876 [CrossRef]
    [Google Scholar]
  29. Rajagopal L., Clancy A., Rubens C. E. 2003; A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 278:14429–14441 [CrossRef]
    [Google Scholar]
  30. Ruppert U., Irmler A., Kloft N., Forchhammer K. 2002; The novel protein phosphatase PphA from Synechocystis PCC 6803 controls dephosphorylation of the signalling protein PII. Mol Microbiol 44:855–864 [CrossRef]
    [Google Scholar]
  31. Shi L. 2004; Manganese-dependent protein O-phosphatases in prokaryotes and their biological functions. Front Biosci 9:1382–1397 [CrossRef]
    [Google Scholar]
  32. Shi L., Zhang W. 2004; Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes. Microbiology 150:2247–2256 [CrossRef]
    [Google Scholar]
  33. Shi L., Potts M., Kennelly P. J. 1998; The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22:229–253 [CrossRef]
    [Google Scholar]
  34. Shi L., Kehres D. G., Maguire M. E. 2001; The PPP-family protein phosphatases PrpA and PrpB of Salmonella enterica serovar Typhimurium possess distinct biochemical properties. J Bacteriol 183:7053–7057 [CrossRef]
    [Google Scholar]
  35. Smith C. L., Khandelwal P., Keliikuli K., Zuiderweg E. R., Saper M. A. 2001; Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase. Mol Microbiol 42:967–979 [CrossRef]
    [Google Scholar]
  36. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  37. Treuner-Lange A., Ward M. J., Zusman D. R. 2001; Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development. Mol Microbiol 40:126–140 [CrossRef]
    [Google Scholar]
  38. Vijay K., Brody M. S., Fredlund E., Price C. W. 2000; A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis. Mol Microbiol 35:180–188 [CrossRef]
    [Google Scholar]
  39. Vincent C., Doublet P., Grangeasse C., Vaganay E., Cozzone A. J., Duclos B. 1999; Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase. Wzb. J Bacteriol 181:3472–3477
    [Google Scholar]
  40. Wang J. Y., Koshland D. E. Jr 1978; Evidence for protein kinase activities in the prokaryote Salmonella typhimurium. J Biol Chem 253:7605–7608
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27585-0
Loading
/content/journal/micro/10.1099/mic.0.27585-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error