1887

Abstract

A single gene cluster encoding components of a putative ATP-binding cassette (ABC) transporter for basic amino acids was identified in the incomplete genome sequence of the thermophilic Gram-positive bacterium by searches. The cluster comprises three genes, and these were amplified from chromosomal DNA of , ligated into plasmid vectors and expressed in . The purified solute-binding protein (designated ArtJ) was demonstrated to bind -arginine with high affinity ( =0·39±0·06 μM). Competition experiments revealed only partial inhibition by excess -lysine (38 %) and -ornithine (46 %), while no inhibition was observed with -histidine or other amino acids tested. The membrane-associated transport complex, composed of a permease (designated ArtM) and an ATPase component (designated ArtP), was solubilized from membranes by decanoylsucrose and purified by metal-affinity chromatography. The ArtMP complex, when incorporated into liposomes formed from a crude extract of lipids, displayed ATPase activity in the presence of ArtJ only. Addition of -arginine further stimulated the activity twofold. ATP hydrolysis was optimal at 60 °C and sensitive to the specific inhibitor vanadate. Analysis of kinetic parameters revealed a maximal velocity of ATP hydrolysis of 0·71 μmol P min (mg protein) and a of 1·59 mM. Together, these results identify the ArtJMP complex as a high-affinity arginine ABC transporter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27591-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510835.html?itemId=/content/journal/micro/10.1099/mic.0.27591-0&mimeType=html&fmt=ahah

References

  1. Davidson A. L., Shuman H. A., Nikaido H. 1992; Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A 89:2360–2364 [CrossRef]
    [Google Scholar]
  2. Dassa E., Bouige P. 2001; The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229 [CrossRef]
    [Google Scholar]
  3. Folch J., Lees M., Sloane Stanley G.-H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
    [Google Scholar]
  4. Hall J. A., Davidson A. L., Nikaido H. 1998; Preparation and reconstitution of the membrane-associated maltose transporter complex of Escherichia coli. Methods Enzymol 292:20–29
    [Google Scholar]
  5. Higgins C. F. 1992; ABC transporters: from microorganism to man. Annu Rev Cell Biol 8:67–113 [CrossRef]
    [Google Scholar]
  6. Horlacher R., Xavier K. B., Santos H., DiRuggiero J., Kossmann M., Boos W. 1998; Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archeon Thermococcus litoralis . J Bacteriol 180:680–689
    [Google Scholar]
  7. Hosie A. H. F., Poole P. S. 2001; Bacterial ABC transporters of amino acids. Res Microbiol 152:259–270 [CrossRef]
    [Google Scholar]
  8. Hülsmann A., Lurz R., Scheffel F., Schneider E. 2000; Maltose and maltodextrin transport in the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose-binding protein tolerant to low pH. J Bacteriol 182:6292–6301 [CrossRef]
    [Google Scholar]
  9. Hunke S., Schneider E, Dröse S. 1995; Vanadate and bafilomycin A1 are potent inhibitors of the ATPase activity of the reconstituted bacterial ATP-binding cassette transporter for maltose (MalFGK2. Biochem Biophys Res Commun 216:589–594 [CrossRef]
    [Google Scholar]
  10. Jurado A. S., Pinheiro T. J., Madeira V. M. 1991; Physical studies on membrane lipids of Bacillus stearothermophilus: temperature and calcium effects. Arch Biochem Biophys 289:167–179 [CrossRef]
    [Google Scholar]
  11. Kempf B., Gade J., Bremer E. 1997; Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 179:6213–6220
    [Google Scholar]
  12. Landmesser H., Stein A., Brinkmann M., Hunke S., Schneider E, Blüschke B. 2002; Large-scale purification, dissociation and functional reassembly of the maltose ATP-binding cassette transporter (MalFGK2) ofSalmonella typhimurium . Biochim Biophys Acta 156564–72 [CrossRef]
    [Google Scholar]
  13. Liu C. E., Ames G. F.-L. 1997; Characterization of transport through the periplasmic histidine permease using proteoliposomes reconstituted by dialysis. J Biol Chem 272:859–866 [CrossRef]
    [Google Scholar]
  14. Liu C. E., Liu P.-Q., Ames G. F.-L. 1997; Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter. J Biol Chem 272:21883–21891 [CrossRef]
    [Google Scholar]
  15. Meng S.-Y., Bennett G. N. 1992; Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669
    [Google Scholar]
  16. Miller J. H. 1972 A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Nikaido K., Ames G. F.-L. 1992; Purification and characterization of the periplasmic lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium . J Biol Chem 267:20706–20712
    [Google Scholar]
  18. Nohno T., Saito T., Hong J. 1986; Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ. Mol Gen Genet 205:260–269 [CrossRef]
    [Google Scholar]
  19. Richarme G., Kepes A. 1983; Study of binding protein-ligand interaction by ammonium sulphate assisted adsorption on cellulose ester filters. Biochim Biophys Acta 742:16–24 [CrossRef]
    [Google Scholar]
  20. Saier M. H. Jr 2000; A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411 [CrossRef]
    [Google Scholar]
  21. Scheffel F., Fleischer R., Schneider E. 2004; Functional reconstitution of a maltose ATP-binding cassette transporter from the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius. Biochim Biophys Acta 165657–65 [CrossRef]
    [Google Scholar]
  22. Schneider E. 2003; Import of solutes by ABC transporters – the maltose and other systems. In ABC Proteins: from Bacteria to Man pp 157–185 Edited by Holland I. B., Cole S., Kuchler K., Higgins C. Amsterdam: Elsevier;
    [Google Scholar]
  23. Sekowska A., Robin S., Daudin J.-J., Danchin A, Hénaut A. 2001; Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis. Genome Biol 2: research 0019.1–0019.12 doi: 10.1186/gb-2001-2-6-research0019 http://genomebiology.com/2001/2/6/research/0019
    [Google Scholar]
  24. Sharma S., Davidson A. L. 2000; Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis. J Bacteriol 182:6570–6576 [CrossRef]
    [Google Scholar]
  25. Sleator R. D., Hill C. 2001; Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71
    [Google Scholar]
  26. Sutcliffe I. C., Russell R. R. 1995; Lipoproteins of gram-positive bacteria. J Bacteriol 177:1123–1128
    [Google Scholar]
  27. van der Heide T., Poolman B. 2002; ABC transporters: one, two or four extracytoplasmic substrate-binding sites?. EMBO Rep 3:938–943 [CrossRef]
    [Google Scholar]
  28. Wissenbach U., Six S., Bongaerts J., Ternes D., Steinwachs S., Unden G. 1995; A third periplasmic transport system for l-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 17:675–686 [CrossRef]
    [Google Scholar]
  29. Wu L., Welker N. E. 1991; Cloning and characterization of a glutamine transport operon of Bacillus stearothermophilus NUB36: effect of temperature on regulation of transcription. J Bacteriol 173:4877–4888
    [Google Scholar]
  30. Zhang Z., Feige N. J., Chang A. B., Anderson I. J., Brodianski V. M., Vitreschak A. G., Gelfand M. S., Saier M. H. Jr 2003; A transporter of Escherichia coli specific for l- and d-methionine is a prototype for a new family within the ABC superfamily. Arch Microbiol 180:88–100 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27591-0
Loading
/content/journal/micro/10.1099/mic.0.27591-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error