1887

Abstract

produces a cellulase enzyme complex called the cellulosome. When cells were grown on different carbon substrates such as Avicel, pectin, xylan, or a mixture of all three, the subunit composition of the cellulosomal subpopulations and their enzymic activities varied significantly. Fractionation of the cellulosomes (7–11 fractions) indicated that the cellulosome population was heterogeneous, although the composition of the scaffolding protein CbpA, endoglucanase EngE and cellobiohydrolase ExgS was relatively constant. One of the cellulosomal fractions with the greatest endoglucanase activity also showed the highest or second highest cellulase activity under all growth conditions tested. The cellulosomal fractions produced from cells grown on a mixture of carbon substrates showed the greatest cellulase activity and contained CbpA, EngE/EngK, ExgS/EngH and EngL. High xylanase activity in cellulose, pectin and mixed carbon-grown cells was detected with a specific cellulosomal fraction which had relatively larger amounts of XynB, XynA and unknown proteins (35–45 kDa). These results indicate that the assembly of cellulosomes occurs in a non-random fashion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27605-0
2005-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511491.html?itemId=/content/journal/micro/10.1099/mic.0.27605-0&mimeType=html&fmt=ahah

References

  1. Anderson N. G., Anderson N. L. 1978; Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem 85:331–340 [CrossRef]
    [Google Scholar]
  2. Bayer E. A., Belaich J. P., Shoham Y., Lamed R. 2004; The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554 [CrossRef]
    [Google Scholar]
  3. Béguin P. 1983; Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem 131:333–336 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Doi R. H., Kosugi A. 2004; Cellulosomes: plant cell wall degrading enzyme complexes. Nat Rev Microbiol 2:541–551 [CrossRef]
    [Google Scholar]
  6. Doi R. H., Kosugi A., Murashima K., Tamaru Y., Han S. O. 2003; Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914 [CrossRef]
    [Google Scholar]
  7. Gorg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., Weiss W. 2000; The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053 [CrossRef]
    [Google Scholar]
  8. Han S. O., Yukawa H., Inui M., Doi R. H. 2003a; Transcription of Clostridium cellulovorans cellulosomal cellulase and hemicellulase genes. J Bacteriol 185:2520–2527 [CrossRef]
    [Google Scholar]
  9. Han S. O., Yukawa H., Inui M., Doi R. H. 2003b; Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans . J Bacteriol 185:6067–6075 [CrossRef]
    [Google Scholar]
  10. Han S. O., Yukawa H., Inui M., Doi R. H. 2004a; Isolation and expression of the xynB gene and its product, XynB, a consistent component of the Clostridium cellulovorans cellulosome. J Bacteriol 186:8347–8355 [CrossRef]
    [Google Scholar]
  11. Han S. O., Cho H. Y., Yukawa H., Inui M., Doi R. H. 2004b; Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J Bacteriol 186:4218–4227 [CrossRef]
    [Google Scholar]
  12. Kosugi A., Murashima K., Doi R. H. 2001; Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates. J Bacteriol 183:7037–7043 [CrossRef]
    [Google Scholar]
  13. Kosugi A., Murashima K., Doi R. H. 2002; Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J Bacteriol 184:6859–6865 [CrossRef]
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  15. Liu C. C., Doi R. H. 1998; Properties of exgS, a gene for a major subunit of the Clostridium cellulovorans cellulosome. Gene 211:39–47 [CrossRef]
    [Google Scholar]
  16. Maamar H., Valette O., Fierobe H.-P., Belaich A., Belaich J.-P., Tardif C. 2004; Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol 51:589–598 [CrossRef]
    [Google Scholar]
  17. Murashima K., Kosugi A., Doi R. H. 2002a; Determination of subunit composition of Clostridium cellulovorans cellulosomes that degrade plant cell walls. Appl Environ Microbiol 68:1610–1615 [CrossRef]
    [Google Scholar]
  18. Murashima K., Kosugi A., Doi R. H. 2002b; Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans . J Bacteriol 184:5088–5095 [CrossRef]
    [Google Scholar]
  19. Ohara H., Karita S., Kimura T., Sakka K., Ohmiya K. 2000; Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64:254–260 [CrossRef]
    [Google Scholar]
  20. Park J. S., Matano Y., Doi R. H. 2001; Cohesin-dockerin interactions of cellulosomal subunits of Clostridium cellulovorans. J Bacteriol 183:5431–5435 [CrossRef]
    [Google Scholar]
  21. Pohlschroder M., Leschine S. B., Canale-Parola E. 1994; Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7. J Bacteriol 176:70–76
    [Google Scholar]
  22. Pohlschroder M., Canale-Parola E., Leschine S. B. 1995; Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7. J Bacteriol 177:6625–6629
    [Google Scholar]
  23. Schwarz W. H. 2001; The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649 [CrossRef]
    [Google Scholar]
  24. Shoseyov O., Doi R. H. 1990; Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc Natl Acad Sci U S A 87:2192–2195 [CrossRef]
    [Google Scholar]
  25. Shoseyov O., Takagi M., Goldstein M. A., Doi R. H. 1992; Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci U S A 89:3483–3487 [CrossRef]
    [Google Scholar]
  26. Sleat R., Mah R. A., Robinson R. 1984; Isolation and characterization of an anaerobic, celluloytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol 48:88–93
    [Google Scholar]
  27. Somogyi M. 1952; Notes on sugar determination. J Biol Chem 195:19–23
    [Google Scholar]
  28. Taiz L., Zeiger E. 1991; Plant and cell architecture. In Plant Physiology pp 9–25 Redwood City, CA: Benjamin Cummings Publishing Co;
    [Google Scholar]
  29. Tamaru Y., Doi R. H. 1999; Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE. J Bacteriol 181:3270–3276
    [Google Scholar]
  30. Tamaru Y., Doi R. H. 2000; The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomalmanA . J Bacteriol 182:244–247 [CrossRef]
    [Google Scholar]
  31. Tamaru Y., Karita S., Ibrahim A., Chan H., Doi R. H. 2000; A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol 182:5906–5910 [CrossRef]
    [Google Scholar]
  32. Tokatlidis K., Dhurjati P., Béguin P. 1993; Properties conferred on Clostridium thermocellum endoglucanase CelC by grafting the duplicated segment of endoglucanase CelD. Protein Eng 6:947–952 [CrossRef]
    [Google Scholar]
  33. Wood W. A., Bhat K. M. 1988; Methods for measuring cellulose activities. Methods Enzymol 160:87–112
    [Google Scholar]
  34. Yaron S., Shimon L. J., Frolow F., Lamed R., Morag E., Shoham Y., Bayer E. A. 1996; Expression, purification and crystallization of a cohesin domain from the cellulosome of Clostridium thermocellum . J Biotechnol 51:243–249 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27605-0
Loading
/content/journal/micro/10.1099/mic.0.27605-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error