1887

Abstract

possesses a social gliding motility that requires type IV pili (TFP). According to the current model, pili attach to an external substrate and retract, pulling the cell body forward along their long axis. By analogy with the situation in other bacteria employing TFP-dependent motility, pili have been assumed to be composed of pilin (PilA) subunits, but this has not previously been confirmed. The first 28 amino acids of the PilA protein share extensive homology with the N-terminal oligomerization domain of pilins in other bacterial species. To facilitate purification, the authors engineered a truncated form of PilA lacking the first 28 amino acids and purified this protein in soluble form. Polyclonal antibody generated against this protein was reactive with native pilin and pili. Using this antibody, it was confirmed that TFP of are indeed composed of PilA, and that TFP are located unipolarly and required for social gliding motility via retraction. Using tethering as well as motility assays, details of pili function in social motility were further examined.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27614-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510353.html?itemId=/content/journal/micro/10.1099/mic.0.27614-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Mattick J. S. 1995; Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre-pilin-like leader sequence. Mol Microbiol 16:485–496 [CrossRef]
    [Google Scholar]
  2. Alm R. A., Mattick J. S. 1996; Identification of two genes with prepilin-like leader sequences involved in type 4 fimbrial biogenesis in Pseudomonas aeruginosa . J Bacteriol 178:3809–3817
    [Google Scholar]
  3. Alm R. A., Hallinan J. P., Watson A. A., Mattick J. S. 1996; Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol Microbiol 22:161–173 [CrossRef]
    [Google Scholar]
  4. Binnig G., Quate C. F., Gerber C. 1986; Atomic force microscope. Phys Rev Lett 56:930–933 [CrossRef]
    [Google Scholar]
  5. Bradley D. E. 1972; Shortening of Pseudomonas aeruginosa pili after RNA-phage adsorption. J Gen Microbiol 72:303–319 [CrossRef]
    [Google Scholar]
  6. Bradley D. E. 1974; The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 58:149–163 [CrossRef]
    [Google Scholar]
  7. Bradley D. E. 1980; A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26:146–154 [CrossRef]
    [Google Scholar]
  8. Campos J. M., Geisselsoder J., Zusman D. R. 1978; Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119:167–178 [CrossRef]
    [Google Scholar]
  9. Craig L., Taylor R. K., Pique M. E. 9 other authors 2003; Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150 [CrossRef]
    [Google Scholar]
  10. Dufrene Y. F. 2002; Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184:5205–5213 [CrossRef]
    [Google Scholar]
  11. Forest K. T., Bernstein S. L., Getzoff E. D., So M., Tribbick G., Geysen H. M., Deal C. D., Tainer J. A. 1996; Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies. Infect Immun 64:644–652
    [Google Scholar]
  12. Harlow E., Lane D. 1988 Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Hodgkin J., Kaiser D. 1979; Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol Gen Genet 171:177–191 [CrossRef]
    [Google Scholar]
  14. Kaiser D. 1979; Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76:5952–5956 [CrossRef]
    [Google Scholar]
  15. Keizer D. W., Slupsky C. M., Kalisiak M., Campbell A. P., Crump M. P., Sastry P. A., Hazes B., Irvin R. T., Sykes B. D. 2001; Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J Biol Chem 276:24186–24193 [CrossRef]
    [Google Scholar]
  16. Li Y., Sun H., Ma X., Lu A., Lux R., Zusman D., Shi W. 2003; Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100:5443–5448 [CrossRef]
    [Google Scholar]
  17. Merz A. J., So M., Sheetz M. P. 2000; Pilus retraction powers bacterial twitching motility. Nature 407:98–102 [CrossRef]
    [Google Scholar]
  18. Notredame C., Higgins D., Heringa J. 2000; T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217 [CrossRef]
    [Google Scholar]
  19. Paranchych W., Frost L. S., Carpenter M. 1978; N-terminal amino acid sequence of pilin isolated from Pseudomonas aeruginosa . J Bacteriol 134:1179–1180
    [Google Scholar]
  20. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A. 1995; Structure of the fibre-forming protein pilin at 2·6 Å resolution. Nature 378:32–38 [CrossRef]
    [Google Scholar]
  21. Russell M. A., Darzins A. 1994; The pilE gene product of Pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. Mol Microbiol 13:973–985 [CrossRef]
    [Google Scholar]
  22. Silverman M., Simon M. 1974; Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74 [CrossRef]
    [Google Scholar]
  23. Skerker J. M., Berg H. C. 2001; Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98:6901–6904 [CrossRef]
    [Google Scholar]
  24. Stocker B. A. D. 1956; Bacterial flagella: morphology, constitution and inheritance. Symp Soc Gen Microbiol 6:19–40
    [Google Scholar]
  25. Sun H., Zusman D. R., Shi W. 2000; Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10:1143–1146 [CrossRef]
    [Google Scholar]
  26. Wall D., Kaiser D. 1999; Type IV pili and cell motility. Mol Microbiol 32:1–10 [CrossRef]
    [Google Scholar]
  27. Wu S. S. 1997 The role of Type IV pili in social gliding motility of Myxococcus xanthus. PhD thesis Stanford University;
    [Google Scholar]
  28. Wu S. S., Kaiser D. 1995; Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18:547–558 [CrossRef]
    [Google Scholar]
  29. Wu S. S., Kaiser D. 1997; Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179:7748–7758
    [Google Scholar]
  30. Wu S. S., Wu J., Kaiser D. 1997; The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23:109–121 [CrossRef]
    [Google Scholar]
  31. Yang Z., Geng Y., Xu D., Kaplan H. B., Shi W. 1998; A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30:1123–1130 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27614-0
Loading
/content/journal/micro/10.1099/mic.0.27614-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error