1887

Abstract

Yeast wall protein 1 (Ywp1, also called Pga24) of is predicted to be a 533 aa polypeptide with an N-terminal secretion signal, a C-terminal glycosylphosphatidylinositol anchor signal and a central region rich in serine and threonine. In yeast cultures, Ywp1p appeared to be linked covalently to glucans of the wall matrix, but, as cultures approached stationary phase, Ywp1p accumulated in the medium and was extractable from cells with disulfide-reducing agents. An 11 kDa propeptide of Ywp1p was also present in these soluble fractions; it possessed the sole -glycan of Ywp1p and served as a useful marker for Ywp1p. DNA vaccines encoding all or part of Ywp1p generated analytically useful antisera in mice, but did not increase survival times for disseminated candidiasis. Replacement of the coding sequence of with the fluorescent reporter revealed that expression of is greatest during yeast exponential-phase growth, but downregulated in stationary phase and upon filamentation. Expression was upregulated when the extracellular phosphate concentration was low. Disruption by homologous recombination of both alleles resulted in no obvious change in growth, morphology or virulence, but the Ywp1p-deficient blastoconidia exhibited increased adhesiveness and biofilm formation, suggesting that Ywp1p may promote dispersal of yeast forms of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27663-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511631.html?itemId=/content/journal/micro/10.1099/mic.0.27663-0&mimeType=html&fmt=ahah

References

  1. Ames B. N. 1966; Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118
    [Google Scholar]
  2. Annes J. P., Munger J. S., Rifkin D. B. 2003; Making sense of latent TGFβ activation. J Cell Sci 116:217–224 [CrossRef]
    [Google Scholar]
  3. Bain J. M., Stubberfield C., Gow N. A. R. 2001; Ura-status-dependent adhesion of Candida albicans mutants. FEMS Microbiol Lett 204:323–328 [CrossRef]
    [Google Scholar]
  4. Bennett R. J., Uhl M. A., Miller M. G., Johnson A. D. 2003; Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol 23:8189–8201 [CrossRef]
    [Google Scholar]
  5. Brawner D. L., Cutler J. E. 1989; Oral Candida albicans isolates from nonhospitalized normal carriers, immunocompetent hospitalized patients, and immunocompromised patients with or without acquired immunodeficiency syndrome. J Clin Microbiol 27:1335–1341
    [Google Scholar]
  6. Cargile B. J., Talley D. L., Stephenson J. L. Jr 2004; Immobilized pH gradients as a first dimension in shotgun proteomics and analysis of the accuracy of pI predictability of peptides. Electrophoresis 25:936–945 [CrossRef]
    [Google Scholar]
  7. Chaffin W. L., Casanova M., Gozalbo D, López-Ribot J. L., Martínez J. P. 1998; Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180
    [Google Scholar]
  8. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A. 2001; Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394 [CrossRef]
    [Google Scholar]
  9. Chattaway F. W., Shenolikar S., Barlow A. J. E. 1974; The release of acid phosphatase and polysaccharide- and protein-containing components from the surface of the dimorphic forms of Candida albicans by treatment with dithiothreitol. J Gen Microbiol 83:423–425 [CrossRef]
    [Google Scholar]
  10. Chen P. S Jr, Toribara T. Y., Warner H. 1956; Microdetermination of phosphorus. Anal Chem 28:1756–1758 [CrossRef]
    [Google Scholar]
  11. Chen J. W., Pan W., D'Souza M. P., August J. T. 1985; Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys 239:574–586 [CrossRef]
    [Google Scholar]
  12. Cormack B. P., Bertram G., Egerton M., Gow N. A. R., Falkow S., Brown A. J. P. 1997; Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143:303–311 [CrossRef]
    [Google Scholar]
  13. Cutler J. E., Granger B. L., Han Y. 2002; Immunoprotection against candidiasis. In Candida and Candidiasis pp 243–256 Edited by Calderone R. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Davis D., Edwards J. E. Jr, Mitchell A. P., Ibrahim A. S. 2000; Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68:5953–5959 [CrossRef]
    [Google Scholar]
  15. de Groot P. W. J., Hellingwerf K. J., Klis F. M. 2003; Genome-wide identification of fungal GPI proteins. Yeast 20:781–796 [CrossRef]
    [Google Scholar]
  16. de Groot P. W. J., de Boer A. D., Cunningham J., Dekker H. L., de Jong L., Hellingwerf K. J., de Koster C., Klis F. M. 2004; Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965 [CrossRef]
    [Google Scholar]
  17. de Nobel J. G., Barnett J. A. 1991; Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7:313–323 [CrossRef]
    [Google Scholar]
  18. de Nobel H., Lipke P. N. 1994; Is there a role for GPIs in yeast cell-wall assembly?. Trends Cell Biol 4:42–45 [CrossRef]
    [Google Scholar]
  19. de Nobel J. G., Klis F. M., Priem J., Munnik T., van den Ende H. 1990; The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae . Yeast 6:491–499 [CrossRef]
    [Google Scholar]
  20. Doedt T., Krishnamurthy S., Tebarth B., Stempel C., Russell C. L., Brown A. J. P., Ernst J. F, Bockmühl D. P. 2004; APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15:3167–3180 [CrossRef]
    [Google Scholar]
  21. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36 [CrossRef]
    [Google Scholar]
  22. Dujon B., Sherman D., Fischer G. & 64 other authors; 2004; Genome evolution in yeasts. Nature 430:35–44 [CrossRef]
    [Google Scholar]
  23. Eder J., Fersht A. R. 1995; Pro-sequence-assisted protein folding. Mol Microbiol 16:609–614 [CrossRef]
    [Google Scholar]
  24. Enloe B., Diamond A., Mitchell A. P. 2000; A single-transformation gene function test in diploid Candida albicans . J Bacteriol 182:5730–5736 [CrossRef]
    [Google Scholar]
  25. García-Sánchez S., Iraqui I., Janbon G., Ghigo J.-M., d'Enfert C, Aubert S. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545 [CrossRef]
    [Google Scholar]
  26. Gerami-Nejad M., Berman J., Gale C. A. 2001; Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans . Yeast 18:859–864 [CrossRef]
    [Google Scholar]
  27. Gietz R. D., Woods R. A. 2002; Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96
    [Google Scholar]
  28. Gillum A. M., Tsay E. Y. H., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation ofS. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  29. Golvano J., Lasarte J. J., Sarobe P., Prieto J, Gullón A., Borrás-Cuesta F. 1990; Polarity of immunogens: implications for vaccine design. Eur J Immunol 20:2363–2366 [CrossRef]
    [Google Scholar]
  30. Gow N. A. R., Brown A. J. P., Odds F. C. 2002; Fungal morphogenesis and host invasion. Curr Opin Microbiol 5:366–371 [CrossRef]
    [Google Scholar]
  31. Granger B. L., Green S. A., Gabel C. A., Howe C. L., Mellman I., Helenius A. 1990; Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem 265:12036–12043
    [Google Scholar]
  32. Granger B. L., Flenniken M. L., Davis D. A., Mitchell A. P., Han Y., Han S. K., Cutler J. E. 2001; Identification of a novel, thiol-extractable mannoprotein of Candida albicans. In Abstracts of the 101st General Meeting of the American Society for Microbiology abstract F-46 Orlando, FL, USA:
    [Google Scholar]
  33. Han Y., Cutler J. E. 1995; Antibody response that protects against disseminated candidiasis. Infect Immun 63:2714–2719
    [Google Scholar]
  34. Han Y., Kanbe T., Cherniak R., Cutler J. E. 1997; Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun 65:4100–4107
    [Google Scholar]
  35. Han Y., Ulrich M. A., Cutler J. E. 1999; Candida albicans mannan extract–protein conjugates induce a protective immune response against experimental candidiasis. J Infect Dis 179:1477–1484 [CrossRef]
    [Google Scholar]
  36. Hoffman C. S., Winston F. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli . Gene 57:267–272 [CrossRef]
    [Google Scholar]
  37. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68 [CrossRef]
    [Google Scholar]
  38. Hoyer L. L. 2001; The ALS gene family of Candida albicans. Trends Microbiol 9:176–180 [CrossRef]
    [Google Scholar]
  39. Jones T., Federspiel N. A., Chibana H. & 9 other authors; 2004; The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101:7329–7334 [CrossRef]
    [Google Scholar]
  40. Kapteyn J. C., Hoyer L. L., Hecht J. E., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M, Müller W. H. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611
    [Google Scholar]
  41. Kemner K. M., Kelly S. D., Lai B. & 7 other authors; 2004; Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:686–687 [CrossRef]
    [Google Scholar]
  42. Kuhn D. M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888 [CrossRef]
    [Google Scholar]
  43. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  44. Lan C.-Y., Newport G., Murillo L. A., Jones T., Scherer S., Davis R. W., Agabian N. 2002; Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 99:14907–14912 [CrossRef]
    [Google Scholar]
  45. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans . Sabouraudia 13:148–153 [CrossRef]
    [Google Scholar]
  46. Lee S. A., Wormsley S., Kamoun S., Lee A. F. S., Joiner K., Wong B. 2003; An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20:595–610 [CrossRef]
    [Google Scholar]
  47. Li X., Yan Z., Xu J. 2003; Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362 [CrossRef]
    [Google Scholar]
  48. Lillie S. H., Pringle J. R. 1980; Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394
    [Google Scholar]
  49. Maecker H. T., Umetsu D. T., DeKruyff R. H., Levy S. 1997; DNA vaccination with cytokine fusion constructs biases the immune response to ovalbumin. Vaccine 15:1687–1696 [CrossRef]
    [Google Scholar]
  50. Mann M., Hendrickson R. C., Pandey A. 2001; Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473 [CrossRef]
    [Google Scholar]
  51. Masuoka J. 2004; Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 17:281–310 [CrossRef]
    [Google Scholar]
  52. Munro C. A., Whitton R. K., Hughes H. B., Rella M., Selvaggini S., Gow N. A. R. 2003; CHS8 – a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet Biol 40:146–158 [CrossRef]
    [Google Scholar]
  53. Nantel A., Dignard D., Bachewich C. & 12 other authors; 2002; Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465 [CrossRef]
    [Google Scholar]
  54. Newport G., Agabian N. 1997; KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem 272:28954–28961 [CrossRef]
    [Google Scholar]
  55. Newport G., Kuo A., Flattery A., Gill C., Blake J. J., Kurtz M. B., Abruzzo G. K., Agabian N. 2003; Inactivation of Kex2p diminishes the virulence of Candida albicans . J Biol Chem 278:1713–1720 [CrossRef]
    [Google Scholar]
  56. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  57. Nitz M., Ling C.-C., Otter A., Cutler J. E., Bundle D. R. 2002; The unique solution structure and immunochemistry of the Candida albicans β-1,2-mannopyranan cell wall antigens. J Biol Chem 277:3440–3446 [CrossRef]
    [Google Scholar]
  58. Ogawa N., DeRisi J., Brown P. O. 2000; New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4321 [CrossRef]
    [Google Scholar]
  59. Olsson I., Larsson K., Palmgren R., Bjellqvist B. 2002; Organic disulfides as a means to generate streak-free two-dimensional maps with narrow range basic immobilized pH gradient strips as first dimension. Proteomics 2:1630–1632 [CrossRef]
    [Google Scholar]
  60. Pincus S. H., Smith M. J., Jennings H. J., Burritt J. B., Glee P. M. 1998; Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen. J Immunol 160:293–298
    [Google Scholar]
  61. Redding K., Holcomb C., Fuller R. S. 1991; Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J Cell Biol 113:527–538 [CrossRef]
    [Google Scholar]
  62. Resende C., Parham S. N., Tinsley C., Ferreira P., Duarte J. A. B., Tuite M. F. 2002; The Candida albicans Sup35p protein (CaSup35p): function, prion-like behaviour and an associated polyglutamine length polymorphism. Microbiology 148:1049–1060
    [Google Scholar]
  63. Rockwell N. C., Thorner J. W. 2004; The kindest cuts of all: crystal structures of Kex2 and furin reveal secrets of precursor processing. Trends Biochem Sci 29:80–87 [CrossRef]
    [Google Scholar]
  64. Rothbard J. B., Taylor W. R. 1988; A sequence pattern common to T cell epitopes. EMBO J 7:93–100
    [Google Scholar]
  65. Rowell J. F., Ruff A. L., Guarnieri F. G., Staveley-O'Carroll K., Lin X., Tang J., August J. T., Siliciano R. F. 1995; Lysosome-associated membrane protein-1-mediated targeting of the HIV-1 envelope protein to an endosomal/lysosomal compartment enhances its presentation to MHC class II-restricted T cells. J Immunol 155:1818–1828
    [Google Scholar]
  66. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L. 2003; Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060 [CrossRef]
    [Google Scholar]
  67. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  68. Sohn K., Urban C., Brunner H., Rupp S. 2003; EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47:89–102
    [Google Scholar]
  69. Sommer J. R. 1977; To cationize glass. J Cell Biol 75:245a
    [Google Scholar]
  70. Staab J. F., Bahn Y.-S., Sundstrom P. 2003; Integrative, multifunctional plasmids for hypha-specific or constitutive expression of green fluorescent protein in Candida albicans. Microbiology 149:2977–2986 [CrossRef]
    [Google Scholar]
  71. Sundstrom P. 2002; Adhesion in Candida spp. Cell Microbiol 4:461–469 [CrossRef]
    [Google Scholar]
  72. Uthayakumar S., Granger B. L. 1995; Cell surface accumulation of overexpressed hamster lysosomal membrane glycoproteins. Cell Mol Biol Res 41:405–420
    [Google Scholar]
  73. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874
    [Google Scholar]
  74. Wilson R. B., Davis D., Enloe B. M., Mitchell A. P. 2000; A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16:65–70 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27663-0
Loading
/content/journal/micro/10.1099/mic.0.27663-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error