1887

Abstract

Coenzyme F is the central low-redox-potential electron carrier in methanogenic metabolism. The coenzyme is reduced under hydrogen by the action of F-dependent hydrogenase. The standard free-energy change at pH 7 of F reduction was determined to be −15 kJ mol, irrespective of the temperature (25–65 °C). Experiments performed with methane-forming cell suspensions of incubated under various conditions demonstrated that the ratios of reduced and oxidized F were in thermodynamic equilibrium with the gas-phase hydrogen partial pressures. During growth in a fed-batch fermenter, ratios changed in connection with the decrease in dissolved hydrogen. For most of the time, the changes were as expected for thermodynamic equilibrium between the oxidation state of F inside the cells and extracellular hydrogen. Also, methanol-metabolizing, but not acetate-converting, cells of maintained the ratios of reduced and oxidized coenzyme F in thermodynamic equilibrium with external hydrogen. The results of the study demonstrate that F is a useful probe to assess hydrogen concentrations in H-metabolizing methanogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27679-0
2005-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511697.html?itemId=/content/journal/micro/10.1099/mic.0.27679-0&mimeType=html&fmt=ahah

References

  1. de Poorter L. M. I., Keltjens J. T. 2001; Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the archaeon Methanobacterium thermoautotrophicum. J Microbiol Methods 47:233–241 [CrossRef]
    [Google Scholar]
  2. de Poorter L. M. I., Geerts W. G., Theuvenet A. P. R., Keltjens J. T. 2003; Bioenergetics of the formyl-methanofuran dehydrogenase and heterodisulfide reductase reactions in Methanothermobacter thermautotrophicus. Eur J Biochem 270:66–75
    [Google Scholar]
  3. DiMarco A. A., Bobik T. A., Wolfe R. S. 1990; Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394 [CrossRef]
    [Google Scholar]
  4. Eirich L. D., Vogels G. D., Wolfe R. S. 1978; Proposed structure for coenzyme F420 fromMethanobacterium . Biochemistry 17:4583–4593 [CrossRef]
    [Google Scholar]
  5. Eirich L. D., Vogels G. D., Wolfe R. S. 1979; Distribution of coenzyme F420 and properties of its hydrolytic fragments. J Bacteriol 140:20–27
    [Google Scholar]
  6. Enßle M., Zirngibl C., Linder D., Thauer R. K. 1991; Coenzyme F420 dependent N5,N10-methylenetetrahydromethanopterin dehydrogenase in methanol-grownMethanosarcina barkeri . Arch Microbiol 155:483–490 [CrossRef]
    [Google Scholar]
  7. Fox J. A., Livingston D. J., Orme-Johnson W. H., Walsh C. T. 1987; 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. 1. Purification and characterization. Biochemistry 26:4219–4227 [CrossRef]
    [Google Scholar]
  8. Gijzen H. J., Broers C. A. M., Barughare M., Stumm C. K. 1991; Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 57:1630–1634
    [Google Scholar]
  9. Heine-Dobbernack E., Schoberth S. M., Sahm H. 1988; Relationship of intracellular coenzyme F420 content to growth and metabolic activity ofMethanobacterium bryantii and Methanosarcina barkeri . Appl Environ Microbiol 54:454–459
    [Google Scholar]
  10. Hutten T. J., de Jong M. H., Peeters B. P. H., van der Drift C., Vogels G. D. 1981; Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri . J Bacteriol 145:27–34
    [Google Scholar]
  11. Jacobson F., Walsh C. 1984; Properties of 7,8-didemethyl-8-hydroxy-5-deazaflavins relevant to redox coenzyme function in methanogen metabolism. Biochemistry 23:979–988 [CrossRef]
    [Google Scholar]
  12. Lovley D. R., Ferry J. G. 1985; Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl Environ Microbiol 49:247–249
    [Google Scholar]
  13. Ma K., Thauer R. K. 1990; Purification and properties of N5,N10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum strain Marburg. Eur J Biochem 191:187–193 [CrossRef]
    [Google Scholar]
  14. Michel R., Massanz C., Kostka S., Richter M., Fiebig K. 1995; Biochemical characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from Methanosarcina barkeri Fusaro. Eur J Biochem 233:727–735 [CrossRef]
    [Google Scholar]
  15. Pennings J. L. A., Vermeij P., de Poorter L. M. I., Keltjens J. T., Vogels G. D. 2000; Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain ΔH) in a fed-batch fermentor. Antonie van Leeuwenhoek 77:281–291 [CrossRef]
    [Google Scholar]
  16. Pol A., van der Drift C., Vogels G. D., Cuppen T. J. H. M., Laarhoven W. H. 1980; Comparison of coenzyme F420 from Methanobacterium bryantii with 7- and 8-hydroxyl-10-methyl-5-deazaisoalloxazine. Biochem Biophys Res Commun 92:255–260 [CrossRef]
    [Google Scholar]
  17. Purwantini E., Mukhopadhyay B., Spencer R. W., Daniels L. 1992; Effect of temperature on the spectral properties of coenzyme F420 and related compounds. Anal Biochem 205:342–350 [CrossRef]
    [Google Scholar]
  18. Schill N., van Gulik W. M., Voisard D, von Stockar U. 1996; Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum . Biotechnol Bioeng 51:645–658
    [Google Scholar]
  19. Schönheit P., Moll J., Thauer R. K. 1979; Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum . Arch Microbiol 123:105–107 [CrossRef]
    [Google Scholar]
  20. Schwörer B., Thauer R. K. 1991; Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155:459–465 [CrossRef]
    [Google Scholar]
  21. te Brömmelstroet B. W., Hensgens C. M. H., Keltjens J. T., van der Drift C., Vogels G. D. 1990; Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, fromMethanobacterium thermoautotrophicum strain ΔH. J Biol Chem 265:1852–1857
    [Google Scholar]
  22. te Brömmelstroet B. W., Geerts W. J., Keltjens J. T., van der Drift C., Vogels G. D. 1991a; Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, fromMethanosarcina barkeri . Biochim Biophys Acta 1079:293–302 [CrossRef]
    [Google Scholar]
  23. te Brömmelstroet B. W., Hensgens C. M. H., Keltjens J. T., van der Drift C., Vogels G. D. 1991b; Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain ΔH. Biochim Biophys Acta 1073:77–84 [CrossRef]
    [Google Scholar]
  24. Thauer R. K. 1998; Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406 [CrossRef]
    [Google Scholar]
  25. Vaupel M., Thauer R. K. 1998; Two F420-reducing hydrogenases in Methanosarcina barkeri. Arch Microbiol 169:201–205 [CrossRef]
    [Google Scholar]
  26. Vermeij P., Pennings J. L. A., Maassen S. M., Keltjens J. T., Vogels G. D. 1997; Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum strain ΔH. J Bacteriol 179:6640–6648
    [Google Scholar]
  27. von Felten P., Bachofen R. 2000; Continuous monitoring of the cytoplasmic pH in Methanobacterium thermoautotrophicum using the intracellular factor F420 as indicator. Microbiology 146:3245–3250
    [Google Scholar]
  28. Zehnder A. J. B., Wuhrmann K. 1976; Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166 [CrossRef]
    [Google Scholar]
  29. Zinder S. H. 1993; Physiological ecology of methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics pp 128–206 Edited by Ferry J. G. New York: Chapman & Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27679-0
Loading
/content/journal/micro/10.1099/mic.0.27679-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error