1887

Abstract

Identification of microbial community members in complex environmental samples is time consuming and repetitive. Here, ribosomal sequences and hidden Markov models are used in a novel approach to rapidly assign fungi to their presumptive genera. The ITS1 and ITS2 fragments from a range of axenic, anaerobic gut fungal cultures, including several type strains, were isolated and the RNA secondary structures predicted for these sequences were used to generate a fingerprinting program. The methodology was then tested and the algorithms improved using a collection of environmentally derived sequences, providing a rapid indicator of the fungal diversity and numbers of novel sequence groups within the environmental sample from which they were derived. While the methodology was developed to assist in investigations involving the rumen ecosystem, it has potential generic application in studying diversity and population dynamics in other microbial ecosystems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27689-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511557.html?itemId=/content/journal/micro/10.1099/mic.0.27689-0&mimeType=html&fmt=ahah

References

  1. Akin D. E., Benner R. 1988; Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Appl Environ Microbiol 54:1117–1125
    [Google Scholar]
  2. Attwood T. K., Bradley P., Flower D. R. & 9 other authors; 2003; PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res 31:400–402 [CrossRef]
    [Google Scholar]
  3. Bateman A., Birney E., Cerruti L. & 7 other authors; 2002; The Pfam Protein Families Database. Nucleic Acids Res 30:276–280 [CrossRef]
    [Google Scholar]
  4. Bateman A., Coin L., Durbin R. & 10 other authors; 2004; The Pfam Protein Families Database. Nucleic Acids Res Database Issue 32:D138–D141 [CrossRef]
    [Google Scholar]
  5. Bauchop T. 1979; Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38:148–158
    [Google Scholar]
  6. Brookman J. L., Mennim G., Trinci A. P. J., Theodorou M. K., Tuckwell D. S. 2000a; Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146:393–403
    [Google Scholar]
  7. Brookman J. L., Ozkose E., Rogers S., Trinci A. P. J., Theodorou M. K. 2000b; Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive. FEMS Microbiol Ecol 31:261–267 [CrossRef]
    [Google Scholar]
  8. Cheng K.-J., Forsberg C. W., Minato H., Costerton J. W. 1991; Microbial ecology and physiology of feed degradation within the rumen. In Physiological Aspects of Digestion and Metabolism in Ruminants pp 595–624 Edited by Tsuda T., Sasaki Y., Kawashima R. Toronto, Ontario, Canada: Academic Press;
    [Google Scholar]
  9. Coleman A. W. 2003; ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375 [CrossRef]
    [Google Scholar]
  10. Eddy S. R. 1998; Profile hidden Markov models. Bioinformatics 14:755–763 [CrossRef]
    [Google Scholar]
  11. Eddy S. R. 2001; HMMER: Profile hidden Markov models for biological sequence analysis. http://hmmer.wustl.edu/
  12. Fliegerova K., Hodrova B., Voigt K. 2004; Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi. Folia Microbiol (Praha) 49:157–164 [CrossRef]
    [Google Scholar]
  13. Hausner G., Inglis G., Yanke L. J., Kawchuk L. M., McAllister T. A. 2000; Analysis of restriction fragment length polymorphisms in the ribosomal DNA of a selection of anaerobic chytrids. Can J Bot 78:917–927
    [Google Scholar]
  14. Hulo N., Sigrist C. J. A., Le Saux V., Langendijk-Genevaux P. S., Bordoli L., Gattiker A., De Castro E., Bucher P., Bairoch A. 2004; Recent improvements to the PROSITE database. Nucleic Acids Res 32:D134–D137 [CrossRef]
    [Google Scholar]
  15. Joblin K. N., Matsui H., Naylor G. E., Ushida K. 2002; Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Curr Microbiol 45:46–53 [CrossRef]
    [Google Scholar]
  16. Lee S. S., Ha J. K., Cheng K. J. 2000; Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl Environ Microbiol 66:3807–3813 [CrossRef]
    [Google Scholar]
  17. Liao D. 1999; Concerted evolution: molecular mechanisms and biological implications. Am J Hum Genet 64:24–30 [CrossRef]
    [Google Scholar]
  18. Mathews D. H., Sabina J., Zuker M., Turner D. H. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940 [CrossRef]
    [Google Scholar]
  19. Mennim G. 1997 The application of ribosomal DNA sequence data and other molecular approaches to the study of anaerobic gut fungi PhD thesis Faculty of Science and Engineering, University of Manchester; UK:
    [Google Scholar]
  20. Mulder N. J., Apweiler R., Attwood T. K. & 34 other authors; 2003; The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318 [CrossRef]
    [Google Scholar]
  21. Munn E. A., Orpin C. G., Greenwood C. A. 1988; The ultrastructure and possible relationships of four obligate anaerobic chytridiomycete fungi from the rumen of sheep. Biosystems 22:67–81 [CrossRef]
    [Google Scholar]
  22. O'Donnel K., Cigelnik E. 1997; Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116 [CrossRef]
    [Google Scholar]
  23. Orpin C. G. 1975; Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 98:423–430
    [Google Scholar]
  24. Ozkose E. 2001 Morphology and molecular ecology of anaerobic fungi PhD thesis University of Wales; Aberystwyth:
    [Google Scholar]
  25. Ozkose E., Thomas B. J., Davies D. R., Griffith G. W., Theodorou M. K. 2001; Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79:666–673
    [Google Scholar]
  26. Pearl F. M. G., Bennett C. F., Bray J. E., Harrison A. P., Martin N., Shepherd A., Sillitoe I., Thornton J., Orengo C. A. 2003; The CATH database: an extended protein family resource for structural and functional genomics. Nucleic Acids Res 31:452–455 [CrossRef]
    [Google Scholar]
  27. Quandt K., Frech K., Karas H., Wingender E., Werner T. 1995; MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–4884 [CrossRef]
    [Google Scholar]
  28. Ranjard L., Poly F., Lata J. C., Mougel C., Thioulouse J., Nazaret S. 2001; Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487 [CrossRef]
    [Google Scholar]
  29. Schultz J., Milpetz F., Bork P., Ponting C. P. 1998; SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864 [CrossRef]
    [Google Scholar]
  30. Theodorou M. K., Mennim G., Davies D., Zhu W.-Y., Trinci A. P. J., Brookman J. 1996; Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc Natl Acad Sci U S A 55:913–926
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    [Google Scholar]
  32. Vainio E. J., Hantula J. 2000; Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936 [CrossRef]
    [Google Scholar]
  33. van Nues R. W., Rientjes J. M. J., van der Sande C. A. F. M., Zerp S. F., Sluiter C., Venema J., Planta R. J., Raue H. A. 1994; Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucleic Acids Res 22:912–919 [CrossRef]
    [Google Scholar]
  34. Vogler A. P., DeSalle R. 1994; Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol Biol Evol 11:393–405
    [Google Scholar]
  35. Ward D. M., Weller R., Bateson M. M. 1990; 16S ribosomal-RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65 [CrossRef]
    [Google Scholar]
  36. Wendel J. F., Schnabel A., Seelanan T. 1995; Bidirectional interlocus concerted evolution following alloploid speciation in cotton (Gossypium. Proc Natl Acad Sci U S A 92:280–284 [CrossRef]
    [Google Scholar]
  37. Zuker M., Mathews D. H., Turner D. H. 1999; Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology pp 11–43 Edited by Barciszewski J., Clark B. F. C. NATO ASI Series Dordrecht: Kluwer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27689-0
Loading
/content/journal/micro/10.1099/mic.0.27689-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error