1887

Abstract

The essential mechanisms and virulence factors enabling species to survive and replicate inside host macrophages are not fully understood. The authors previously reported that a putative guanosine 5′-diphosphate 3′-diphosphate (ppGpp) mutant ( mutant) of failed to replicate in HeLa cells. The present study showed that the pattern of surface proteins and morphological change of the mutant were different from wild-type. wild-type changed its morphology upon treatment with ppGpp synthetase I activation inhibitor. In various tests under stress conditions, including nutrient starvation, nitric oxide resistance, acid resistance and antibiotic resistance, the mutant had a lower stress resistance than wild-type. Although the mutant has the same smooth phenotype and LPS profile as wild-type, it had a higher rate of adherence to macrophages but lower internalization and intracellular replication within macrophages. The mutant did not co-localize with either late endosomes or lysosomes and was almost cleared from the spleens of mice after 10 days, without splenomegaly. RT-PCR was used to detect mRNA from around 10 cells incubated in low-pH enriched medium; it showed that the expression of increased after 30 min incubation. The data suggest that SpoT does not contribute to intracellular trafficking of , but contributes to the maintenance of bacterial morphology and the physiological adaptation required for intracellular replication.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27782-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511607.html?itemId=/content/journal/micro/10.1099/mic.0.27782-0&mimeType=html&fmt=ahah

References

  1. Arenas G. N., Staskevich A. S., Aballay A., Mayorga L. S. 2000; Intracellular trafficking of Brucella abortus in J774 macrophages. Infect Immun 68:4255–4263 [CrossRef]
    [Google Scholar]
  2. Avarbock D., Salem J., Li L. S., Wang Z. M., Rubin H. 1999; Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis . Gene 233:261–269 [CrossRef]
    [Google Scholar]
  3. Barker M. M., Gaal T., Josaitis C. A., Gourse R. L. 2001; Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305:673–688 [CrossRef]
    [Google Scholar]
  4. Bensing B. A., Lopez J. A., Sullam P. M. 2004; The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect Immun 72:6528–6537 [CrossRef]
    [Google Scholar]
  5. Brassard J., Gottschalk M., Quessy S. 2004; Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol 102:87–94 [CrossRef]
    [Google Scholar]
  6. Brouillette E., Talbot B. G., Malouin F. 2003; The fibronectin-binding proteins of Staphylococcus aureus may promote mammary gland colonization in a lactating mouse model of mastitis. Infect Immun 71:2292–2295 [CrossRef]
    [Google Scholar]
  7. Chen J. W., Cha Y., Yuksel K. U., Gracy R. W., August J. T. 1988; Isolation and sequencing of a cDNA clone encoding lysosomal membrane glycoprotein mouse LAMP-1. J Biol Chem 263:8754–8758
    [Google Scholar]
  8. Clegg S., Hughes K. T. 2002; FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 184:1209–1213 [CrossRef]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J. & 39 other authors; 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Comerci D. J., Martinez-Lorenzo M. J., Sieira R., Gorvel J. P., Ugalde R. A. 2001; Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol 3:159–168 [CrossRef]
    [Google Scholar]
  11. Concepcion M. B., Nelson D. R. 2003; Expression of spoT in Borrelia burgdorferi during serum starvation. J Bacteriol 185:444–452 [CrossRef]
    [Google Scholar]
  12. Delrue R. M., Martinez-Lorenzo M., Lestrate P. 7 other authors 2001; Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3:487–497 [CrossRef]
    [Google Scholar]
  13. DelVecchio V. G., Kapatral V., Redkar R. J. 22 other authors 2002; The genome sequence of the facultative intracellular pathogen Brucella melitensis . Proc Natl Acad Sci U S A 99:443–448 [CrossRef]
    [Google Scholar]
  14. Detileux P. G., Deyoe B. L., Cheville N. F. 1990; Entry and intracellular localization of Brucella spp. in Vero cells: fluorescence and electron microscopy. Vet Pathol 27:317–328 [CrossRef]
    [Google Scholar]
  15. Dramsi S., Bourdichon F., Cabanes D., Lecuit M., Fsihi H., Cossart P. 2004; FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53:639–649 [CrossRef]
    [Google Scholar]
  16. Drazek E. S., Houng H. H., Crawford R. M., Hadfield T. L., Hoover D. L., Warren R. L. 1995; Deletion of purE attenuates Brucella melitensis 16M for growth in human monocyte-derived macrophages. Infect Immun 63:3297–3301
    [Google Scholar]
  17. Endley S., McMurray D., Ficht T. A. 2001; Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol 183:2454–2462 [CrossRef]
    [Google Scholar]
  18. Eskra L., Canavessi A., Carey M., Splitter G. 2001; Brucella abortus genes identified following constitutive growth and macrophage infection. Infect Immun 69:7736–7742 [CrossRef]
    [Google Scholar]
  19. Finlay B., Falkow S. 1997; Common themes in microbial pathogenicity. Microbiol Mol Biol Rev 61:136–169
    [Google Scholar]
  20. Flärdh K., Axberg T., Alberston N. H., Kjelleberg S. 1994; Stringent control during carbon starvation of marine Vibrio sp. Strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene. J Bacteriol 176:5949–5957
    [Google Scholar]
  21. Foulongne V., Bourg G., Cazevieille C., Michaux-charachon S., O'Callaghan D. 1999; Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68:1297–1303
    [Google Scholar]
  22. Fraser C. M., Casjens S., Huang W. M. 35 other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . Nature 390:580–586 [CrossRef]
    [Google Scholar]
  23. Greenway D. L. A., England R. R. 1999; The intrinsic resistance of Escherichia coli to various antimicrobial agents requires ppGpp and σs. Lett Appl Microbiol 29:323–326 [CrossRef]
    [Google Scholar]
  24. Gross A., Spiesser S., Terraza A., Rouot B., Caron E., Dornand J. 1998; Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect Immun 66:1309–1316
    [Google Scholar]
  25. Hammer B. K., Swanson M. S. 1999; Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33:721–731 [CrossRef]
    [Google Scholar]
  26. Jin D. J., Cashel M., Friedman D. I., Nakamura Y., Walter W. A., Gross C. A. 1988; Effects of rifampicin resistant rpoB mutants on antitermination and interaction with nusA in Escherichia coli . J Mol Biol 204:247–261 [CrossRef]
    [Google Scholar]
  27. Kim S., Watarai M., Kondo Y., Erdenebaatar J., Makino S.-I., Shirahata T. 2003; Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 71:3020–3027 [CrossRef]
    [Google Scholar]
  28. Kim S., Kurokawa D., Watanabe K., Makino S.-I., Shirahata T., Watarai M. 2004; Brucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice. FEMS Microbiol Lett 234:289–295 [CrossRef]
    [Google Scholar]
  29. Ko J., Splitter G. A. 2003; Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev 16:65–78 [CrossRef]
    [Google Scholar]
  30. Köhler S., Porte F., Jubier-Maurin V., Ouahrani-Bettache S., Teyssier J., Liautard J.-P. 2002a; The intramacrophagic environment of Brucella suis and bacterial response. Vet Microbiol 90:299–309 [CrossRef]
    [Google Scholar]
  31. Köhler S., Foulongne V., Ouahrani-Bettache S., Bourg G., Teyssier J., Ramuz M., Liautard J.-P. 2002b; The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A 99:15711–15716 [CrossRef]
    [Google Scholar]
  32. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M., Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  33. Kulakov Y. K., Guigue-Talet P. G., Ramuz M. R., O'Callaghan D. 1997; Response of Brucella suis 1330 and B. canis RM6/66 to growth at acid pH and induction of an adaptive acid tolerance response. Res Microbiol 148:145–151 [CrossRef]
    [Google Scholar]
  34. Martinez-Costa O. H., Fernandez-Moreno M. A., Malpartida F. 1998; The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J Bacteriol 180:4123–4132
    [Google Scholar]
  35. Mechold U., Cashel M., Steiner K., Gentry D., Malke H. 1996; Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis . J Bacteriol 178:1401–1411
    [Google Scholar]
  36. Metzger S., Schreiber G., Aizenman E., Cashel M., Glaser G. 1989; Characterization of the relA1 mutation and a comparison of relA1 with newrelA null alleles in Escherichia coli . J Biol Chem 264:21146–21152
    [Google Scholar]
  37. Miller R. A., Britigan B. E. 1997; Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10:1–18
    [Google Scholar]
  38. Mitchison D. A. 1992; The Garrod Lecture. Understanding the chemotherapy of tuberculosis – current problems. J Antimicrob Chemother 29:477–493 [CrossRef]
    [Google Scholar]
  39. Mittenhuber G. 2001; Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins. J Mol Microbiol Biotechnol 3:585–600
    [Google Scholar]
  40. Moreno E., Speth S. L., Jones L. M., Berman D. T. 1981; Immunochemical characterization of Brucella lipopolysaccharides and polysaccharides. Infect Immun 31:214–222
    [Google Scholar]
  41. Mortensen J. E., Moore D. G., Clarridge J. E., Young E. J. 1986; Antimicrobial susceptibility of clinical isolates of Brucella. Diagn Microbiol Infect Dis 5:163–169 [CrossRef]
    [Google Scholar]
  42. Naryshkina T., Mustaev A., Darst S. A., Severinov K. 2001; The β′ subunit of Escherichia coli RNA polymerase is not required for interaction with initiating nucleotide but is necessary for interaction with rifampicin. J Biol Chem 276:13308–13313 [CrossRef]
    [Google Scholar]
  43. O'Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M. L., Bourg G., Foulongne V., Frutos P., Kulakov Y., Ramuz M. 1999; A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis . Mol Microbiol 33:1210–1220
    [Google Scholar]
  44. Ojha A. K., Mukherjee T. K., Chatterji D. 2000; High intracellular level of guanosine tetraphosphate in Mycobacterium smegmatis changes the morphology of the bacterium. Infect Immun 68:4084–4091 [CrossRef]
    [Google Scholar]
  45. Ostling J., Holmquist L., Kjelleberg S. 1996; Global analysis of the carbon starvation response of a marine Vibrio species with disruptions in genes homologous torelA and spoT . J Bacteriol 178:4901–4908
    [Google Scholar]
  46. Pizarro-Cerda J., Moreno E., Sanguedolce V., Mege J. L., Gorvel J. P. 1998a; Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect Immun 66:2387–2392
    [Google Scholar]
  47. Pizarro-Cerda J., Meresse S., Parton R. G., van der Goot G., Sola-Landa A., Lopez-Goni I., Moreno E., Grovel J. P. 1998b; Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66:5711–5724
    [Google Scholar]
  48. Porte F., Liautard J.-P., Köhler S. 1999; Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67:4041–4047
    [Google Scholar]
  49. Primm T. P., Andersen S. J., Mizrahi V., Avarbock D., Rubin H., Barry C. E. III: 2000; The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182:4889–4898 [CrossRef]
    [Google Scholar]
  50. Rodionov D. G., Ishiguro E. E. 1995; Direct correlation between overproduction of guanosine 3′,5′-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli. J Bacteriol 177:4224–4229
    [Google Scholar]
  51. Schubert A., Zakikhany K., Pietrocola G., Meinke A., Speziale P., Eikamnns B. J., Reinscheid D. J. 2004; The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infect Immun 72:6197–6205 [CrossRef]
    [Google Scholar]
  52. Sieira R., Comerci D. J., Sanchez D. O., Ugalde R. A. 2000; A homologue of an operon required for DNA transfer in Agrobacterium tumefaciens is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 182:4849–4855 [CrossRef]
    [Google Scholar]
  53. Steel C., Wan Q., Xu X.-H. N. 2004; Single live cell imaging of chromosomes in chloramphenicol-induced filamentous Pseudomonas aeruginosa . Biochemistry 43:175–182 [CrossRef]
    [Google Scholar]
  54. Teixeira-gomes A. P., Cloeckaert A., Zygmunt M. S. 2000; Characterization of heat, oxidative, and acid stress responses in Brucella melitensis . Infect Immun 68:2954–2961 [CrossRef]
    [Google Scholar]
  55. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [CrossRef]
    [Google Scholar]
  56. Ugalde R. A. 1999; Intracellular lifestyle of Brucella spp. common genes with other animal pathogens, plant pathogens, and endosymbionts. Microbes Infect 1:1211–1219 [CrossRef]
    [Google Scholar]
  57. van der Biezen E. A., Sun J., Coleman M. J., Bibb M. J., Jones J. D. 2000; Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc Natl Acad Sci U S A 97:3747–3752 [CrossRef]
    [Google Scholar]
  58. Vinella D., Joseleau-Petit D., Thèvenet D., Bouloc P., D'Ari R. 1993; Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression. J Bacteriol 175:6704–6710
    [Google Scholar]
  59. Watarai M., Makino S.-I., Fujii Y., Okamoto K., Shirahata T. 2002a; Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell Microbiol 4:341–356 [CrossRef]
    [Google Scholar]
  60. Watarai M., Makino S.-I., Shirahata T. 2002b; An essential virulence protein of Brucella abortus, VirB4, requires an intact nucleoside-triphosphate-binding domain. Microbiology 184:1439–1446
    [Google Scholar]
  61. Watarai M., Kim S., Erdenebaatar J., Makino S., Horiuchi M., Shirahata T., Sakaguchi S., Katamine S. 2003; Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198:5–17 [CrossRef]
    [Google Scholar]
  62. Waxman D. J., Strorninger J. L. 1983; Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu Rev Biochem 52:825–869 [CrossRef]
    [Google Scholar]
  63. Wells D. H., Long S. R. 2002; The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Mol Microbiol 43:1115–1127 [CrossRef]
    [Google Scholar]
  64. Wells D. H., Long S. R. 2003; Mutations in rpoBC suppress the defects of aSinorhizobium meliloti relA mutant. J Bacteriol 185:5602–5610 [CrossRef]
    [Google Scholar]
  65. Wendrich T. M., Marahiel M. A. 1997; Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol 26:65–79 [CrossRef]
    [Google Scholar]
  66. White P. G., Wilson J. B. 1951; Differentiation of smooth and non-smooth colonies of brucellae. J Bacteriol 61:239–240
    [Google Scholar]
  67. Winther-Larsen H. C., Koomey M. 2002; Transcriptional, chemosensory and cell-contact-dependent regulation of type IV pilus expression. Curr Opin Microbiol 5:173–178 [CrossRef]
    [Google Scholar]
  68. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. 1991; Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated byspoT null mutations. J Biol Chem 266:5980–5990
    [Google Scholar]
  69. Yang X., Edward E. I. 2003; Temperature-sensitive growth and decreased thermotolerance associated with relA mutations in Escherichia coli . J Bacteriol 185:5765–5771 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27782-0
Loading
/content/journal/micro/10.1099/mic.0.27782-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error