1887

Abstract

Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 μg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na] of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM from showed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic) -mycolates besides dicyclopropanoic mycolate, ranging from C to C, odd- and even-carbon-numbered methoxymycolates ranging from C to C and even- and odd-carbon-numbered ketomycolates ranging from C to C. In contrast, TMM from (wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoic -mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in the group, and . The group possessed predominantly C and C wax ester-mycoloyl TMM, while and the rapid growers tested contained C, C, C and C wax ester-mycoloyl TMM. This technique has marked advantages in the rapid analysis of not only intact glycolipid TMM, but also the mycolic acid composition of each mycobacterial species, since it does not require any degradation process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27791-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511443.html?itemId=/content/journal/micro/10.1099/mic.0.27791-0&mimeType=html&fmt=ahah

References

  1. Azuma I., Seya T. 2001; Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1:1249–1259 [CrossRef]
    [Google Scholar]
  2. Barry C. E., Lee R. E., Mdluli K., Sampson A. E., Schroeder B. G., Slayden R. A., Yuan Y. III 1998; Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179 [CrossRef]
    [Google Scholar]
  3. Beckman E. M., Porcelli S. A., Morita C. T., Behar S. M., Furlong S. T., Brenner M. B. 1994; Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372:691–694 [CrossRef]
    [Google Scholar]
  4. Bekierkunst A. 1968; Acute granulomatous response produced in mice by trehalose-6,6-dimycolate. J Bacteriol 96:958–961
    [Google Scholar]
  5. Bekierkunst A., Levij I. S., Yarkoni E. 1971a; Suppression of urethan-induced lung adenomas in mice treated with trehalose-6,6-dimycolate (cord factor) and living bacillus Calmette Guerin. Science 174:1240–1242 [CrossRef]
    [Google Scholar]
  6. Bekierkunst A., Yarkoni E., Flechner I., Morecki S., Vilkas E., Lederer E. 1971b; Immune response to sheep red blood cells in mice pretreated with mycobacterial fractions. Infect Immun 4:256–263
    [Google Scholar]
  7. Bloch H. 1950; Studies on the virulence of tubercle bacilli; the relationship of the physiological state of the organisms to their pathogenicity. J Exp Med 92:507–526 [CrossRef]
    [Google Scholar]
  8. Daffé M., Lanéelle M. A., Asselineau C., David H, Lévy-Frébault V. 1983; Taxonomic value of mycobacterial fatty acids: proposal for a method of analysis. Ann Microbiol 134B:241–256 in French
    [Google Scholar]
  9. Dubnau E., Soares S., Benichou A., Vaz T., Prome D., Prome J. C., Quemard A, Lanéelle M. A., Daffé M. 1997; Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids. Mol Microbiol 23:313–322 [CrossRef]
    [Google Scholar]
  10. Dubnau E., Chan J., Raynaud C., Mohan V. P., Yu K., Quemard A., Smith I, Lanéelle M. A., Daffé M. 2000; Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36:630–637
    [Google Scholar]
  11. Enomoto K., Oka S., Fujiwara N., Okamoto T., Okuda Y., Maekura R., Kuroki T., Yano I. 1998; Rapid serodiagnosis of Mycobacterium avium-intracellulare complex infection by ELISA with cord factor (trehalose 6, 6′-dimycolate), and serotyping using the glycopeptidolipid antigen. Microbiol Immunol 42:689–696 [CrossRef]
    [Google Scholar]
  12. Fujiwara N., Pan J., Enomoto K., Terano Y., Honda T., Yano I. 1999; Production and partial characterization of anti-cord factor (trehalose-6,6′-dimycolate) IgG antibody in rabbits recognizing mycolic acid subclasses of Mycobacterium tuberculosis or Mycobacterium avium . FEMS Immunol Med Microbiol 24:141–149
    [Google Scholar]
  13. Glickman M. S., Cox J. S., Jacobs W. R. Jr 2000; A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727 [CrossRef]
    [Google Scholar]
  14. Laval F., Deon C., Monsarrat B, Lanéelle M. A., Daffé M. 2001; Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Anal Chem 73:4537–4544 [CrossRef]
    [Google Scholar]
  15. Matsunaga I., Oka S., Inoue T., Yano I. 1990; Mycolyl glycolipids stimulate macrophages to release a chemotactic factor. FEMS Microbiol Lett 55:49–53
    [Google Scholar]
  16. Matsunaga I., Oka S., Fujiwara N., Yano I. 1996; Relationship between induction of macrophage chemotactic factors and formation of granulomas caused by mycoloyl glycolipids from Rhodococcus ruber(Nocardia rubra). J Biochem 120:663–670 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E. 1982; Lipids: complex lipids, their chemistry, biosynthesis and roles. Part I. Physiology of the mycobacteria. In The Biology of the Mycobacteria pp 95–184 Edited by Ratledge C., Stanford J. London: Academic Press;
    [Google Scholar]
  18. Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Magnusson M. 1984a; Mycolic acid patterns of some species of Mycobacterium . Arch Microbiol 139:225–231
    [Google Scholar]
  19. Minnikin D. E., Parlett J. H., Magnusson M., Ridell M., Lind A. 1984b; Mycolic acid patterns of representatives of Mycobacterium bovis. BCG. J Gen Microbiol 130:2733–2736
    [Google Scholar]
  20. Miquel A. M., Ginsburg H., Asselineau J. 1963; Composition of waxes C and D from Mycobacterium avium. Bull Soc Chim Biol 45:715–730 in French
    [Google Scholar]
  21. Moody D. B., Reinhold B. B., Guy M. R. & 9 other authors; 1997; Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278:283–286 [CrossRef]
    [Google Scholar]
  22. Moody D. B., Reinhold B. B., Reinhold V. N., Besra G. S., Porcelli S. A. 1999; Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunol Lett 65:85–91 [CrossRef]
    [Google Scholar]
  23. Niazi K., Chiu M., Mendoza R. & 8 other authors; 2001; The A′ and F′ pockets of human CD1b are both required for optimal presentation of lipid antigens to T cells. J Immunol 166:2562–2570 [CrossRef]
    [Google Scholar]
  24. Noll H., Bloch H., Asselineau J., Lederer E. 1956; The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta 20:299–309 [CrossRef]
    [Google Scholar]
  25. Orbach-Arbouys S., Tenu J. P., Petit J. F. 1983; Enhancement of in vitro and in vivo antitumor activity by cord factor (6-6′-dimycolate of trehalose) administered suspended in saline. Int Arch Allergy Appl Immunol 71:67–73 [CrossRef]
    [Google Scholar]
  26. Ozeki Y., Kaneda K., Fujiwara N., Morimoto M., Oka S., Yano I. 1997; In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6′-dimycolate. Infect Immun 65:1793–1799
    [Google Scholar]
  27. Pan J., Fujiwara N., Oka S., Maekura R., Ogura T., Yano I. 1999; Anti-cord factor (trehalose 6,6′ dimycolate) IgG antibody in tuberculosis patients recognizes mycolic acid subclasses. Microbiol Immunol 43:863–869 [CrossRef]
    [Google Scholar]
  28. Rastogi N., Legrand E., Sola C. 2001; The mycobacteria: an introduction to nomenclature and pathogenesis. Rev Sci Tech 20:21–54
    [Google Scholar]
  29. Ribi E., Granger D. L., Milner K. C., Yamamoto K., Strain S. M., Parker R., Smith R. W., Brehmer W., Azuma I. 1982; Induction of resistance to tuberculosis in mice with defined components of mycobacteria and with some unrelated materials. Immunology 46:297–305
    [Google Scholar]
  30. Ryll R., Kumazawa Y., Yano I. 2001; Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids – a review. Microbiol Immunol 45:801–811 [CrossRef]
    [Google Scholar]
  31. Silva C. L., Ekizlerian S. M., Fazioli R. A. 1985; Role of cord factor in the modulation of infection caused by mycobacteria. Am J Pathol 118:238–247
    [Google Scholar]
  32. Sueoka E., Nishiwaki S., Okabe S., Iida N., Suganuma M., Yano I., Aoki K., Fujiki H. 1995; Activation of protein kinase C by mycobacterial cord factor, trehalose 6-monomycolate, resulting in tumor necrosis factor-alpha release in mouse lung tissues. Jpn J Cancer Res 86:749–755 [CrossRef]
    [Google Scholar]
  33. Takayama K., Wang C., Besra G. S. 2005; Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101 [CrossRef]
    [Google Scholar]
  34. Tomiyasu I., Yano I. 1984; Separation and analysis of novel polyunsaturated mycolic acids from a psychrophilic, acid-fast bacterium, Gordona aurantiaca . Eur J Biochem 139:173–180 [CrossRef]
    [Google Scholar]
  35. Toriyama S., Yano I., Masui M., Kusunose M., Kusunose E. 1978; Separation of C50–60 and C70–80 mycolic acid molecular species and their changes by growth temperatures in Mycobacterium phlei . FEBS Lett 95:111–115 [CrossRef]
    [Google Scholar]
  36. Toriyama S., Yano I., Masui M., Kusunose E., Kusunose M., Akimori N. 1980; Regulation of cell wall mycolic acid biosynthesis in acid-fast bacteria. I. Temperature-induced changes in mycolic acid molecular species and related compounds in Mycobacterium phlei . J Biochem 88:211–221
    [Google Scholar]
  37. Toriyama S., Imaizumi S., Tomiyasu I., Masui M., Yano I. 1982; Incorporation of 18O into long-chain, secondary alcohols derived from ester mycolic acids inMycobacterium phlei . Biochim Biophys Acta 712:427–429 [CrossRef]
    [Google Scholar]
  38. Toubiana R., Berlan J., Sato H., Strain M. 1979; Three types of mycolic acid from Mycobacterium tuberculosis Brevanne: implications for structure-function relationships in pathogenesis. J Bacteriol 139:205–211
    [Google Scholar]
  39. Walker R. W., Prome J. C., Lacave C. S. 1973; Biosynthesis of mycolic acids. Formation of a C32 beta-keto ester from palmitic acid in a cell-free system of Corynebacterium diphtheriae . Biochim Biophys Acta 326:52–62 [CrossRef]
    [Google Scholar]
  40. Watanabe R., Yoo Y. C., Hata K. & 8 other authors; 1999; Inhibitory effect of trehalose dimycolate (TDM) and its stereoisometric derivatives, trehalose dicorynomycolates (TDCMs), with low toxicity on lung metastasis of tumour cells in mice. Vaccine 17:1484–1492 [CrossRef]
    [Google Scholar]
  41. Watanabe M., Aoyagi Y., Ridell M., Minnikin D. E. 2001; Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–1837
    [Google Scholar]
  42. Watanabe M., Aoyagi Y., Mitome H., Fujita T., Naoki H., Ridell M., Minnikin D. E. 2002; Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. Microbiology 148:1881–1902
    [Google Scholar]
  43. Yamagami H., Matsumoto T., Fujiwara N., Arakawa T., Kaneda K., Yano I., Kobayashi K. 2001; Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect Immun 69:810–815 [CrossRef]
    [Google Scholar]
  44. Yano I., Kageyama K., Ohno Y., Masui M., Kusunose E., Kusunose M., Akimori N. 1978; Separation and analysis of molecular species of mycolic acids in Nocardia and related taxa by gas chromatography mass spectrometry. Biomed Mass Spectrom 5:14–24 [CrossRef]
    [Google Scholar]
  45. Yarkoni E., Bekierkunst A. 1976; Nonspecific resistance against infection with Salmonella typhi and Salmonella typhimurium induced in mice by cord factor (trehalose-6,6′-dimycolate) and its analogues. Infect Immun 14:1125–1129
    [Google Scholar]
  46. Yarkoni E., Rapp H. J. 1977; Granuloma formation in lungs of mice after intravenous administration of emulsified trehalose-6,6′-dimycolate (cord factor): reaction intensity depends on size distribution of the oil droplets. Infect Immun 18:552–554
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27791-0
Loading
/content/journal/micro/10.1099/mic.0.27791-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error