1887

Abstract

Bacterial cultures produce subpopulations of cells termed ‘persisters’, reputedly known for high tolerance to killing by antibiotics. Ecologically, antibiotics produced by competing microflora are only one potential stress encountered by bacteria. Another pressure in the environment is toxic metals that are distributed ubiquitously by human pollution, volcanic activity and the weathering of minerals. This study evaluated the time- and concentration-dependent killing of planktonic and biofilm cultures by the water-soluble metal(loid) oxyanions chromate (), arsenate (), arsenite (), selenite (), tellurate () and tellurite (). Correlative to previous reports in the literature, control antibiotic assays indicated that a small proportion of biofilm populations remained recalcitrant to killing by antibiotics (even with 24 h exposure). In contrast, metal oxyanions presented a slow, bactericidal action that eradicated biofilms. When exposed for 2 h, biofilms were up to 310 times more tolerant to killing by metal oxyanions than corresponding planktonic cultures. However, by 24 h, planktonic cells and biofilms were eradicated at approximately the same concentration in all instances. Coloured complexes of metals and chelators could not be generated in biofilms exposed to or , suggesting that the extracellular polymeric matrix of may have a low binding affinity for metal oxyanions. Viable cell counts at 2 and 24 h exposure revealed that, at high concentrations, all of the metal oxyanions had killed 99 % (or a greater proportion) of the bacterial cells in biofilm populations. It is suggested here that the short-term survival of <1 % of the bacterial population corresponds well with the hypothesis that a small population of persister cells may be responsible for the time-dependent tolerance of biofilms to high concentrations of metal oxyanions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27794-0
2005-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3181.html?itemId=/content/journal/micro/10.1099/mic.0.27794-0&mimeType=html&fmt=ahah

References

  1. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S. 2004; Bacterial persistence as a phenotypic switch. Science 305:1622–1625 [CrossRef]
    [Google Scholar]
  2. Balzer G. J., McLean R. J. C. 2002; The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. Can J Microbiol 48:675–680 [CrossRef]
    [Google Scholar]
  3. Beloin C., Valle J., Latour-Lambert P. 8 other authors 2004; Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674
    [Google Scholar]
  4. Bigger J. W. 1944; Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet ii:497–500
    [Google Scholar]
  5. Brooun A., Liu S., Lewis K. 2000; A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646 [CrossRef]
    [Google Scholar]
  6. Brown G. E. Jr, Foster A. L., Ostergren J. D. 1999; Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci U S A 96:3388–3395 [CrossRef]
    [Google Scholar]
  7. Ceri H., Olson M. E., Stremick C., Read R. R., Morck D., Buret A. 1999; The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776
    [Google Scholar]
  8. Ceri H., Olson M., Morck D., Storey D., Read R., Buret A., Olson B. 2001; The MBEC assay system: multiple equivalent biofilms for antibiotic and biocide susceptibility testing. Methods Enzymol 337:377–384
    [Google Scholar]
  9. Cervantes C., Devars S, Campos-García J., Gutiérrez-Corona F., Loza-Tavera H., Torres-Guzmán J. C, Moreno-Sánchez R. 2001; Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347 [CrossRef]
    [Google Scholar]
  10. Chang D.-E., Smalley D. J., Conway T. 2002; Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45:289–306 [CrossRef]
    [Google Scholar]
  11. Chasteen T. G., Bentley R. 2003; Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25 [CrossRef]
    [Google Scholar]
  12. Cheng K. L., Ueno K., Imamura T. 1982 CRC Handbook of Organic Analytical Reagents Boca Raton, FL: CRC Press;
    [Google Scholar]
  13. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [CrossRef]
    [Google Scholar]
  14. Falla T. J., Chopra I. 1998; Joint tolerance to β -lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA . Antimicrob Agents Chemother 42:3282–3284
    [Google Scholar]
  15. Geslin C., Llanos J., Prieur D., Jeanthon C. 2001; The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152:901–905 [CrossRef]
    [Google Scholar]
  16. Gottesman S., Stout V. 1991; Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5:1599–1606 [CrossRef]
    [Google Scholar]
  17. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 [CrossRef]
    [Google Scholar]
  18. Harrison J. J., Ceri H., Stremick C. A., Turner R. J. 2004a; Biofilm susceptibility to metal toxicity. Environ Microbiol 6:1220–1227 [CrossRef]
    [Google Scholar]
  19. Harrison J. J., Ceri H., Stremick C., Turner R. J. 2004b; Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiol Lett 235:357–362 [CrossRef]
    [Google Scholar]
  20. Harrison J. J., Turner R. J., Ceri H. 2005a; Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa . Environ Microbiol 7:981–994 [CrossRef]
    [Google Scholar]
  21. Harrison J. J., Turner R. J., Ceri H. 2005b; Metal tolerance in bacterial biofilms. Recent Res Dev Microbiol 9:33–55
    [Google Scholar]
  22. Huang C.-T., Xu K. D., McFeters G. A., Stewart P. S. 1998; Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64:1526–1531
    [Google Scholar]
  23. Inaoka T., Matsumura Y., Tsuchido T. 1999; SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis . J Bacteriol 181:1939–1943
    [Google Scholar]
  24. Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K. 2004a; Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18 [CrossRef]
    [Google Scholar]
  25. Keren I., Shah D., Spoering A., Kaldalu N., Lewis K. 2004b; Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli . J Bacteriol 186:8172–8180 [CrossRef]
    [Google Scholar]
  26. Korch S. B., Henderson T. A., Hill T. M. 2003; Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50:1199–1213 [CrossRef]
    [Google Scholar]
  27. Lewis K. 2001; Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007 [CrossRef]
    [Google Scholar]
  28. Lewis K. 2005; Persister cells and the riddle of biofilm survival. Biochemistry 70:267–274
    [Google Scholar]
  29. Lloyd-Jones G., Osborn M., Ritchie D. A., Strike P., Hobman J. L., Brown N. L., Rouch D. A. 1994; Accumulation and intracellular fate of tellurite in tellurite-resistant Escherichia coli : a model for the mechanism of resistance. FEMS Microbiol Lett 118:113–119 [CrossRef]
    [Google Scholar]
  30. Lohmeier-Vogel E. M., Ung S., Turner R. J. 2004; In vivo 31P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli . Appl Environ Microbiol 70:7342–7347 [CrossRef]
    [Google Scholar]
  31. Mages M., Óvári M., Tümpling W. Jr, Kröpfl K. 2004; Biofilms as bio-indicator for polluted waters? Total reflection X-ray fluorescence analysis of biofilms of the Tisza River (Hungary. Anal Bioanal Chem 378:1095–1101 [CrossRef]
    [Google Scholar]
  32. Moran L. A., Scrimgeour K. G., Horton H. R., Ochs R. S., Rawn J. D. 1994; Glycolysis. In Biochemistry, 2nd edn. Upper Saddle River, NJ: Prentice Hall;
    [Google Scholar]
  33. Morck D. W., Lam K., McKay S. G., Olson M. E., Prosser B., Ellis B. D., Cleeland R., Costerton J. W. 1994; Comparative evaluation of fleroxacin, ampicillin, trimethoprim-sulfamethoxazole, and gentamicin as treatments of catheter-associated urinary tract infection in a rabbit model. Int J Antimicrob Agents 4:S21–S27 [CrossRef]
    [Google Scholar]
  34. Moyed H. S., Bertrand K. P. 1983; hipA , a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–775
    [Google Scholar]
  35. Mukhopadhyay R., Rosen B. P., Phung L. T., Silver S. 2002; Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325 [CrossRef]
    [Google Scholar]
  36. Olson M. E., Ceri H., Morck D. W., Buret A. G., Read R. R. 2002; Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92
    [Google Scholar]
  37. Oremland R. S., Stolz J. F. 2003; The ecology of arsenic. Science 300:939–944 [CrossRef]
    [Google Scholar]
  38. Potrykus J., Węgrzyn G. 2004; The ypdI gene codes for a putative lipoprotein involved in the synthesis of colanic acid in Escherichia coli . FEMS Microbiol Lett 235:265–271 [CrossRef]
    [Google Scholar]
  39. Scherrer R., Moyed H. S. 1988; Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. J Bacteriol 170:3321–3326
    [Google Scholar]
  40. Schützendübel A., Polle A. 2002; Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365 [CrossRef]
    [Google Scholar]
  41. Spoering A. L., Lewis K. 2001; Biofilm and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751 [CrossRef]
    [Google Scholar]
  42. Stanley N. R., Lazazzera B. A. 2004; Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924 [CrossRef]
    [Google Scholar]
  43. Stewart P. S. 2002; Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113 [CrossRef]
    [Google Scholar]
  44. Stewart P. S. 2003; Diffusion in biofilms. J Bacteriol 185:1485–1491 [CrossRef]
    [Google Scholar]
  45. Stewart P. S., Rayner J., Roe F., Rees W. M. 2001; Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91:525–532 [CrossRef]
    [Google Scholar]
  46. Stohs S. J., Bagchi D. 1995; Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336 [CrossRef]
    [Google Scholar]
  47. Sutherland I. W. 2001; Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9
    [Google Scholar]
  48. Teitzel G. M., Parsek M. R. 2003; Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa . Appl Environ Microbiol 69:2313–2320 [CrossRef]
    [Google Scholar]
  49. Trutko S. M., Akimenko V. K., Suzina N. E., Anisimova L. A., Shlyapnikov M. G., Baskunov B. P., Duda V. I., Boronin A. M. 2000; Involvement of the respiratory chain of Gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173:178–186 [CrossRef]
    [Google Scholar]
  50. Turner R. J. 2001; Tellurite toxicity and resistance in Gram-negative bacteria. Recent Res Dev Microbiol 5:69–77
    [Google Scholar]
  51. Turner R. J., Weiner J. H., Taylor D. E. 1992; Use of diethyldithiocarbamate for quantitative determination of tellurite uptake by bacteria. Anal Biochem 204:292–295 [CrossRef]
    [Google Scholar]
  52. Turner R. J., Weiner J. H., Taylor D. E. 1998; Selenium metabolism in Escherichia coli . BioMetals 11:223–227 [CrossRef]
    [Google Scholar]
  53. Turner R. J., Weiner J. H., Taylor D. E. 1999; Tellurite-mediated thiol oxidation in Escherichia coli . Microbiology 145:2549–2557
    [Google Scholar]
  54. Turner R. J., Aharonowitz Y., Weiner J. H., Taylor D. E. 2001; Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli . Can J Microbiol 47:33–40 [CrossRef]
    [Google Scholar]
  55. Walters M. C. III, Roe F., Bugnicourt A., Franklin M. J., Stewart P. S. 2003; Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323 [CrossRef]
    [Google Scholar]
  56. Whitfield C., Roberts I. S. 1999; Structure, assembly and regulation of expression of capsules in Escherichia coli . Mol Microbiol 31:1307–1319 [CrossRef]
    [Google Scholar]
  57. Xu K. D., McFeters G. A., Stewart P. S. 2000; Biofilm resistance to antimicrobial agents. Microbiology 146:547–549
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27794-0
Loading
/content/journal/micro/10.1099/mic.0.27794-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error