1887

Abstract

Transposon mutagenesis is a powerful technique for generating collections of insertion mutants for genetic studies. This paper describes how phage Mu DNA transposition complexes, transpososomes, can be exploited for gene delivery to efficiently introduce selectable markers to genomes of Gram-positive bacteria. Mu transpososomes were assembled with custom-designed mini-Mu transposons, concentrated, and electroporated into cells of three Gram-positive bacterial species: , and . Within cells, the complexes reproduced an authentic DNA transposition reaction and integrated the delivered transposons into the bacterial genomes, yielding single-copy insertions. The integration efficiency among different species and strains of Gram-positive bacteria ranged from 1×10 to 2×10 c.f.u. (μg introduced transposon DNA). The strategy should be applicable to a variety of other Gram-positive species after initial optimization of certain key factors affecting transposon delivery, such as the preparation method of competent cells and physical parameters of electroporation. This study extends the scope of the Mu transpososome delivery-based genomic DNA integration strategy to Gram-positive bacteria. Thus, a straightforward generation of sizeable mutant banks is feasible for these bacteria, potentiating several types of genomic-level approaches for studies of a variety of important bacterial processes, such as pathogenicity.

Keyword(s): R-end, right-end
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27807-0
2005-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511209.html?itemId=/content/journal/micro/10.1099/mic.0.27807-0&mimeType=html&fmt=ahah

References

  1. Allet B. 1979; Mu insertion duplicates a 5 base pair sequence at the host inserted site. Cell 16:123–129 [CrossRef]
    [Google Scholar]
  2. Autret N., Dubail I., Trieu-Cuot P., Berche P., Charbit A. 2001; Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun 69:2054–2065 [CrossRef]
    [Google Scholar]
  3. Axelsson L. T., Ahrne S. E., Andersson M. C., Ståhl S. R. 1988; Identification and cloning of a plasmid-encoded erythromycin resistance determinant from Lactobacillus reuteri. Plasmid 20:171–174 [CrossRef]
    [Google Scholar]
  4. Bae T., Banger A. K., Wallace A., Glass E. M., Schneewind O., Missiakas D. M, Åslund F. 2004; Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 101:12312–12317 [CrossRef]
    [Google Scholar]
  5. Barnett T. C., Scott J. R. 2002; Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 184:2181–2191 [CrossRef]
    [Google Scholar]
  6. Beres S. B., Sylva G. L., Barbian K. D. 13 other authors 2002; Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 99:10078–10083 [CrossRef]
    [Google Scholar]
  7. Berg C. M., Berg D. E. 1996; Transposable element tools for microbial genetics. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 2588–2612 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Boeke J. D. 2002; Putting mobile DNA to work: the toolbox. In Mobile DNA II pp 24–37 Edited by Craig N. L., Craigie R., Gellert M., Lambowitz A. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Butterfield Y. S. N., Marra M. A., Asano J. K. 18 other authors 2002; An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. Nucleic Acids Res 30:2460–2468 [CrossRef]
    [Google Scholar]
  10. Caparon M. G., Scott J. R. 1991; Genetic manipulation of pathogenic streptococci. Methods Enzymol 204:556–586
    [Google Scholar]
  11. Chaconas G., Harshey R. M. 2002; Transposition of phage Mu DNA. In Mobile DNA II pp 384–402 Edited by Craig N. L., Craigie R., Gellert M., Lambowitz A. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Chelsom J., Halstensen A., Haga T., Hoiby E. A. 1994; Necrotising fasciitis due to group A streptococci in western Norway: incidence and clinical features. Lancet 344:1111–1115 [CrossRef]
    [Google Scholar]
  13. Craig N. L., Craigie R., Gellert M., Lambowitz A. M. 2002 Mobile DNA II Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Craigie R., Mizuuchi K. 1987; Transposition of Mu DNA: joining of Mu to target DNA can be uncoupled from cleavage at the ends of Mu. Cell 51:493–501 [CrossRef]
    [Google Scholar]
  15. Derbyshire K. M., Takacs C., Huang J. 2000; Using the EZ:: TN Transpososome for transposon mutagenesis in Mycobacterium smegmatis. Epicentre Forum 7:1–4
    [Google Scholar]
  16. Eynard N., Teissié J. 2000; General principles of bacteria electrotransformation: key steps. In Electrotransformation of Bacteria pp 3–22 Edited by Eynard N., Teissié J. Heidelberg: Springer;
    [Google Scholar]
  17. Fernandes P. J., Powell J. A. C., Archer J. A. C. 2001; Construction of Rhodococcus random mutagenesis libraries using Tn5 transposition complexes. Microbiology 147:2529–2536
    [Google Scholar]
  18. Ferretti J. J., McShan W. M., Ajdic D. 20 other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98:4658–4663 [CrossRef]
    [Google Scholar]
  19. Goryshin I. Y., Jendrisak J., Hoffman L. M., Meis R., Reznikoff W. S. 2000; Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100 [CrossRef]
    [Google Scholar]
  20. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [CrossRef]
    [Google Scholar]
  21. Haapa S., Taira S., Heikkinen E., Savilahti H. 1999a; An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res 27:2777–2784 [CrossRef]
    [Google Scholar]
  22. Haapa S., Suomalainen S., Airaksinen M., Paulin L., Savilahti H, Eerikäinen S. 1999b; An efficient DNA sequencing strategy based on the bacteriophage Mu in vitro DNA transposition reaction. Genome Res 9:308–315
    [Google Scholar]
  23. Haapa-Paananen S., Rita H., Savilahti H. 2002; DNA transposition of bacteriophage Mu. A quantitative analysis of target site selection in vitro. J Biol Chem 277:2843–2851 [CrossRef]
    [Google Scholar]
  24. Hamer L., DeZwaan T. M., Montenegro-Chamorro M. V., Frank S. A., Hamer J. E. 2001; Recent advances in large-scale transposon mutagenesis. Curr Opin Chem Biol 5:67–73 [CrossRef]
    [Google Scholar]
  25. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  26. Hanski E., Horwitz P. A., Caparon M. G. 1992; Expression of protein F, the fibronectin-binding protein of Streptococcus pyogenes JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells. Infect Immun 60:5119–5125
    [Google Scholar]
  27. Hayes F. 2003; Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet 37:3–29 [CrossRef]
    [Google Scholar]
  28. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403 [CrossRef]
    [Google Scholar]
  29. Holden M. T. G., Feil E. J., Lindsay J. A. 42 other authors 2004; Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791 [CrossRef]
    [Google Scholar]
  30. Hytönen J., Haataja S., Finne J, Isomäki P. 2000; Identification of a novel glycoprotein-binding activity in Streptococcus pyogenes regulated by the mga gene. Microbiology 146:31–39
    [Google Scholar]
  31. Jones C. L., Khan S. A. 1986; Nucleotide sequence of the enterotoxin B gene from Staphylococcus aureus. J Bacteriol 166:29–33
    [Google Scholar]
  32. Judson N., Mekalanos J. J. 2000; Transposon-based approaches to identify essential bacterial genes. Trends Microbiol 8:521–526 [CrossRef]
    [Google Scholar]
  33. Kahmann R., Kamp D. 1979; Nucleotide sequences of the attachment sites of bacteriophage Mu DNA. Nature 280:247–250 [CrossRef]
    [Google Scholar]
  34. Karaya K., Shimizu T., Taketo A. 2001; New gene cluster for lantibiotic streptin possibly involved in streptolysin S formation. J Biochem 129:769–775 [CrossRef]
    [Google Scholar]
  35. Kuroda M., Ohta T., Uchiyama I. 34 other authors 2001; Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357:1225–1240 [CrossRef]
    [Google Scholar]
  36. Lamberg A., Nieminen S., Qiao M., Savilahti H. 2002; Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage Mu. Appl Environ Microbiol 68:705–712 [CrossRef]
    [Google Scholar]
  37. Laurent J.-P., Hauge K., Burnside K., Cangelosi G. 2003; Mutational analysis of cell wall biosynthesis in Mycobacterium avium. J Bacteriol 185:5003–5006 [CrossRef]
    [Google Scholar]
  38. Lowy F. D. 1998; Staphylococcus aureus infections. N Engl J Med 339:520–532 [CrossRef]
    [Google Scholar]
  39. Lyon W. R., Gibson C. M., Caparon M. G. 1998; A role for trigger factor and an Rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J 17:6263–6275 [CrossRef]
    [Google Scholar]
  40. May J. P., Walker C. A., Maskell D. J., Slater J. D. 2004; Development of an in vivo Himar1 transposon mutagenesis system for use in Streptococcus equi subsp.equi. FEMS Microbiol Lett 238:401–409
    [Google Scholar]
  41. McDevitt D., Rosenberg M. 2001; Exploiting genomics to discover new antibiotics. Trends Microbiol 9:611–617 [CrossRef]
    [Google Scholar]
  42. Mei J.-M., Nourbakhsh F., Ford C. W., Holden D. W. 1997; Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 26:399–407 [CrossRef]
    [Google Scholar]
  43. Mercenier A., Chassy B. M. 1988; Strategies for the development of bacterial transformation systems. Biochimie 70:503–517 [CrossRef]
    [Google Scholar]
  44. Mizuuchi M., Mizuuchi K. 1993; Target site selection in transposition of phage Mu. Cold Spring Harb Symp Quant Biol 58:515–523 [CrossRef]
    [Google Scholar]
  45. Novick R. 1967; Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33:155–166 [CrossRef]
    [Google Scholar]
  46. Novick R. P. 1991; Genetic systems in staphylococci. Methods Enzymol 204:587–636
    [Google Scholar]
  47. Oram D. M., Avdalovic A., Holmes R. K. 2002; Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR. J Bacteriol 184:5723–5732 [CrossRef]
    [Google Scholar]
  48. Proctor R. A. 2000; Microbial pathogenic factors: small-colony variants. In Infection Associated with Medical Devices pp 41–54 Edited by Waldvogel F. A., Bisno A. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  49. Pulliainen A. T., Haataja S., Finne J, Kähkönen S. 2003; Molecular basis of H2O2 resistance mediated by Streptococcal Dpr. Demonstration of the functional involvement of the putative ferroxidase center by site-directed mutagenesis in Streptococcus suis. J Biol Chem 278:7996–8005 [CrossRef]
    [Google Scholar]
  50. Qiao M., Ye S., Koponen O., Ra R., Usabiaga M., Immonen T., Saris P. E. J. 1996; Regulation of the nisin operons in Lactococcus lactis N8. J Appl Bacteriol 80:626–634 [CrossRef]
    [Google Scholar]
  51. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Savilahti H., Rice P. A., Mizuuchi K. 1995; The phage Mu transpososome core: DNA requirements for assembly and function. EMBO J 14:4893–4903
    [Google Scholar]
  53. Scott J. R. 1993; Conjugative transposons. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp 597–614 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  54. Slater J. D., Allen A. G., May J. P., Bolitho S., Lindsay H., Maskell D. J. 2003; Mutagenesis of Streptococcus equi and Streptococcus suis by transposon Tn917. Vet Microbiol 93:197–206 [CrossRef]
    [Google Scholar]
  55. Staats J. J., Feder I., Okwumabua O., Chengappa M. M. 1997; Streptococcus suis: past and present. Vet Res Commun 21:381–407 [CrossRef]
    [Google Scholar]
  56. Takayama K., Hayes B., Vestling M. M., Massey R. J. 2003; Transposon-5 mutagenesis transforms Corynebacterium matruchotii to synthesize novel hybrid fatty acids that functionally replace corynomycolic acid. Biochem J 373:465–474 [CrossRef]
    [Google Scholar]
  57. Tanaka Y., Yoshikawa O., Maruhashi K., Kurane R. 2002; The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch Microbiol 178:351–357 [CrossRef]
    [Google Scholar]
  58. Vecht U., Arends J. P., van der Molen E. J., van Leengoed L. A. 1989; Differences in virulence between two strains of Streptococcus suis type II after experimentally induced infection of newborn germ-free pigs. Am J Vet Res 50:1037–1043
    [Google Scholar]
  59. Vieira J., Messing J. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194 [CrossRef]
    [Google Scholar]
  60. Youngman P. 1993; Transposons and their applications. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp 585–596 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27807-0
Loading
/content/journal/micro/10.1099/mic.0.27807-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error