1887

Abstract

Highly expressed genes in bacteria often have a stronger codon bias than genes expressed at lower levels, due to translational selection. In this study, a comparative analysis of predicted highly expressed (PHX) genes in the and genomes was performed using the codon adaptation index (CAI) as a numerical estimator of gene expression level. Although it has been suggested that there is little heterogeneity in codon usage in G+C-rich bacteria, considerable heterogeneity was found among genes in these two G+C-rich genomes. Using ribosomal protein genes as references, ∼10 % of the genes were predicted to be PHX genes using a CAI cutoff value of greater than 0·78 and 0·75 in and , respectively. The PHX genes showed good agreement with the experimental data on expression levels obtained from proteomic analysis by previous workers. Among 724 and 730 PHX genes identified from and , 368 are orthologue genes present in both genomes, which were mostly ‘housekeeping’ genes involved in cell growth. In addition, 61 orthologous gene pairs with unknown functions were identified as PHX. Only one polyketide synthase gene from each genome was predicted as PHX. Nevertheless, several key genes responsible for producing precursors for secondary metabolites, such as crotonyl-CoA reductase and propionyl-CoA carboxylase, and genes necessary for initiation of secondary metabolism, such as adenosylmethionine synthetase, were among the PHX genes in the two species. The PHX genes exclusive to each genome, and what they imply regarding cellular metabolism, are also discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27833-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512175.html?itemId=/content/journal/micro/10.1099/mic.0.27833-0&mimeType=html&fmt=ahah

References

  1. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147 [CrossRef]
    [Google Scholar]
  2. Birch A., Leiser A., Robinson J. A. 1993; Cloning, sequencing, and expression of the gene encoding methylmalonyl-coenzyme A mutase from Streptomyces cinnamonensis . J Bacteriol 175:3511–3519
    [Google Scholar]
  3. Blanco G., Rodicio M. R., Puglia A. M., Mendez C., Thompson C. J., Salas J. A. 1994; Synthesis of ribosomal proteins during growth of Streptomyces coelicolor. Mol Microbiol 12:375–385 [CrossRef]
    [Google Scholar]
  4. Bucca G., Brassington A. M., Hotchkiss G., Mersinias V., Smith C. P. 2003; Negative feedback regulation of dnaK,clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 50:153–166 [CrossRef]
    [Google Scholar]
  5. Chater K. F., Horinouchi S. 2003; Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15 [CrossRef]
    [Google Scholar]
  6. Coghlan A., Wolfe K. H. 2000; Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16:1131–1145 [CrossRef]
    [Google Scholar]
  7. Cordes C., Mockel B., Eggeling L., Sahm H. 1992; Cloning, organization and functional analysis of ilvA, ilvB and ilvC genes from Corynebacterium glutamicum . Gene 112:113–116 [CrossRef]
    [Google Scholar]
  8. Dos Reis M., Wernisch L., Savva R. 2003; Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 31:6976–6985 [CrossRef]
    [Google Scholar]
  9. Fisher S. H., Magasanik B. 1984; 2-Ketoglutarate and the regulation of aconitase and histidase formation in Bacillus subtilis. J Bacteriol 158:379–382
    [Google Scholar]
  10. Fisher S. H., Wray L. V. Jr 1989; Regulation of glutamine synthetase in Streptomyces coelicolor . J Bacteriol 171:237823–237883
    [Google Scholar]
  11. Friberg M., Gonnet G, von Rohr P. 2004; Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in Saccharomyces cerevisiae . Yeast 21:1083–1093 [CrossRef]
    [Google Scholar]
  12. Gehring A. M., Wang S. T., Kearns D. B., Storer N. Y., Losick R. 2004; Novel genes that influence development in Streptomyces coelicolor . J Bacteriol 186:3570–3577 [CrossRef]
    [Google Scholar]
  13. Grantham R., Gautier C., Gouy M., Jacobzone M., Mercier R. 1981; Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res 9:r43–r74
    [Google Scholar]
  14. Han L., Reynolds K. A. 1997; A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol 179:5157–5164
    [Google Scholar]
  15. Hesketh A. R., Chandra G., Shaw A. D., Rowland J. J., Kell D. B., Bibb M. J., Chater K. F. 2002; Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 46:917–932 [CrossRef]
    [Google Scholar]
  16. Hopwood D. A. 1993; Genetic engineering of Streptomyces to create hybrid antibiotics. Curr Opin Biotechnol 4:531–537 [CrossRef]
    [Google Scholar]
  17. Hopwood D. A. 1999; Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico . Microbiology 145:2183–2202
    [Google Scholar]
  18. Hopwood D. A. 2003; The Streptomyces genome – be prepared!. Nat Biotechnol 21:505–506 [CrossRef]
    [Google Scholar]
  19. Hopwood D. A., Sherman D. H. 1990; Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66 [CrossRef]
    [Google Scholar]
  20. Huang J., Lih C. J., Pan K. H., Cohen S. N. 2001; Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183–3192 [CrossRef]
    [Google Scholar]
  21. Ikeda H., Ishikawa J., Hanamoto K. 7 other authors 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531 [CrossRef]
    [Google Scholar]
  22. Ikemura T. 1981; Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for theE. coli translational system. J Mol Biol 151:389–409 [CrossRef]
    [Google Scholar]
  23. Ikemura T. 1982; Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158:573–597 [CrossRef]
    [Google Scholar]
  24. Ikemura T. 1985; Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34
    [Google Scholar]
  25. Jansen R., Bussemaker H. J., Gerstein M. 2003; Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Res 31:2242–2251 [CrossRef]
    [Google Scholar]
  26. Karlin S., Mrazek J. 2000; Predicted highly expressed genes of diverse prokaryotic genomes. J Bacteriol 182:5238–5250 [CrossRef]
    [Google Scholar]
  27. Karlin S., Campbell A. M., Mrazek J. 1998; Comparative DNA analysis across diverse genomes. Annu Rev Genet 32:185–225 [CrossRef]
    [Google Scholar]
  28. Karlin S., Mrazek J., Campbell A., Kaiser D. 2001; Characterizations of highly expressed genes of four fast-growing bacteria. J Bacteriol 183:5025–5040 [CrossRef]
    [Google Scholar]
  29. Kim D. J., Huh J. H., Yang Y. Y., Kang C. M., Lee I. H., Hyun C. G., Hong S. K., Suh J. W. 2003; Accumulation of S-adenosyl-l-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J Bacteriol 185:592–600 [CrossRef]
    [Google Scholar]
  30. Knight R. D., Freeland S. J., Landweber L. F. 2001; A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol 2: research0010.1–0010.13 [View Article]
    [Google Scholar]
  31. Lafay B., Atherton J. C., Sharp P. M. 2000; Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology 146:851–860
    [Google Scholar]
  32. Leyva-Vazquez M. A., Setlow P. 1994; Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol 176:3903–3910
    [Google Scholar]
  33. Li C., Florova G., Akopiants K., Reynolds K. A. 2004; Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150:3463–3472 [CrossRef]
    [Google Scholar]
  34. Liu H., Reynolds K. A. 1999; Role of crotonyl coenzyme A reductase in determining the ratio of polyketides monensin A and monensin B produced by Streptomyces cinnamonensis . J Bacteriol 181:6806–6813
    [Google Scholar]
  35. Martin-Galiano A. J., Wells J. M., de la Campa A. G. 2004; Relationship between codon biased genes, microarray expression values and physiological characteristics of Streptococcus pneumoniae. Microbiology 150:2313–2325 [CrossRef]
    [Google Scholar]
  36. Mrazek J., Bhaya D., Grossman A. R., Karlin S. 2001; Highly expressed and alien genes of the Synechocystis genome. Nucleic Acids Res 29:1590–1601 [CrossRef]
    [Google Scholar]
  37. Ohama T., Muto A., Osawa S. 1990; Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Res 18:1565–1569 [CrossRef]
    [Google Scholar]
  38. Okamoto S., Lezhava A., Hosaka T., Okamoto-Hosoya Y., Ochi K. 2003; Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin inStreptomyces coelicolor A3(2). J Bacteriol 185:601–609 [CrossRef]
    [Google Scholar]
  39. Pan A., Dutta C., Das J. 1998; Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias. Gene 215:405–413 [CrossRef]
    [Google Scholar]
  40. Perriere G., Thioulouse J. 2002; Use and misuse of correspondence analysis in codon usage studies. Nucleic Acids Res 30:4548–4555 [CrossRef]
    [Google Scholar]
  41. Redshaw P. A., McCann P. A., Pentella M. A., Pogell B. M. 1979; Simultaneous loss of multiple differentiated functions in aerial mycelium-negative isolates of streptomycetes. J Bacteriol 137:891–899
    [Google Scholar]
  42. Rodriguez E., Gramajo H. 1999; Genetic and biochemical characterization of the alpha and beta components of a propionyl-CoA carboxylase complex of Streptomyces coelicolor A3(2). Microbiology 145:3109–3119
    [Google Scholar]
  43. Rudd K. E. 2000; ECOGENE: a genome sequence database for Escherichia coli K-12. Nucleic Acids Res 28:60–64 [CrossRef]
    [Google Scholar]
  44. Schirch V., Hopkins S., Villar E., Angelaccio S. 1985; Serine hydroxymethyltransferase from Escherichia coli: purification and properties. J Bacteriol 163:1–7
    [Google Scholar]
  45. Sezonov G., Duchene A. M., Friedmann A., Guerineau M., Pernodet J. L. 1998; Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol 180:3056–3061
    [Google Scholar]
  46. Sharp P. M., Li W. H. 1986; An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38 [CrossRef]
    [Google Scholar]
  47. Sharp P. M., Li W. H. 1987; The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295 [CrossRef]
    [Google Scholar]
  48. Sharp P. M., Cowe E., Higgins D. G., Shields D. C., Wolfe K. H., Wright F. 1988; Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–8211 [CrossRef]
    [Google Scholar]
  49. Shi L., Zhang W. 2004; Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes. Microbiology 150:2247–2256 [CrossRef]
    [Google Scholar]
  50. Williams M. G., Rogers P. 1987; Expression of arg genes of Escherichia coli during arginine limitation dependent upon stringent control of translation. J Bacteriol 169:1644–1650
    [Google Scholar]
  51. Wright F. 1990; The ‘effective number of codons' used in a gene. Gene 87:23–29 [CrossRef]
    [Google Scholar]
  52. Wright F., Bibb M. J. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65 [CrossRef]
    [Google Scholar]
  53. Zerbe-Burkhardt K., Ratnatilleke A., Philippon N., Birch A., Leiser A., Vrijbloed J. W., Hess D., Hunziker P., Robinson J. A. 1998; Cloning, sequencing, expression, and insertional inactivation of the gene for the large subunit of the coenzyme B12-dependent isobutyryl-CoA mutase from Streptomyces cinnamonensis . J Biol Chem 273:6508–6517 [CrossRef]
    [Google Scholar]
  54. Zhang J. H., Quigley N. B., Gross D. C. 1997; Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv.syringae . Appl Environ Microbiol 63:2771–2778
    [Google Scholar]
  55. Zhang W., Reynolds K. A. 2001; MeaA, a putative coenzyme B12-dependent mutase, provides methylmalonyl coenzyme A for monensin biosynthesis inStreptomyces cinnamonensis . J Bacteriol 183:2071–2080 [CrossRef]
    [Google Scholar]
  56. Zhang W., Yang L., Jiang W., Zhao G., Yang Y., Chiao J. 1999; Molecular analysis and heterologous expression of the gene encoding methylmalonyl-coenzyme A mutase from rifamycin SV-producing strain Amycolatopsis mediterranei U32. Appl Biochem Biotechnol 82:209–225 [CrossRef]
    [Google Scholar]
  57. Zhang Y. X., Denoya C. D., Skinner D. D. 7 other authors 1999; Genes encoding acyl-CoA dehydrogenase (AcdH) homologues from Streptomyces coelicolor and Streptomyces avermitilis provide insights into the metabolism of small branched-chain fatty acids and macrolide antibiotic production. Microbiology 145:2323–2334
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27833-0
Loading
/content/journal/micro/10.1099/mic.0.27833-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error