1887

Abstract

The -isoaspartyl protein carboxyl methyltransferase (pcm) can stimulate repair of isoaspartyl residues arising spontaneously in proteins to normal -aspartyl residues. PCM is needed in for maximal long-term survival when exposed to oxidative stress, osmotic stress, repeated heat stress or methanol. The effect of pH on a mutant during long-term stationary phase was examined. PCM was not required for long-term survival of subjected to pH stress alone; however, PCM-deficient cells showed impaired resistance to paraquat and methanol only at elevated pH. The mutant also showed stress-survival phenotypes in minimal medium buffered to pH 9·0. Accumulation of isoaspartyl residues was accelerated at pH 8·0 or 9·0 , though PCM-deficient cells did not show higher levels of damage. However, the mutant displayed an extended lag phase in recovering from stationary phase at pH 9·0. Protein repair by PCM thus plays a key role in long-term stress survival only at alkaline pH in , and it may function primarily to repair damage in cells that are recovering from nutrient limitation and in those cells that are able to divide during long-term stationary phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27835-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512151.html?itemId=/content/journal/micro/10.1099/mic.0.27835-0&mimeType=html&fmt=ahah

References

  1. Baranyi J., Roberts T. A. 1994; A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294 [CrossRef]
    [Google Scholar]
  2. Blankenhorn D., Phillips J., Slonczewski J. L. 1999; Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216
    [Google Scholar]
  3. Böck A., Sawers G. 1996; Fermentation. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 262–282 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Brennan T. V., Clarke S. 1994; Deamidation and isoaspartate formation in model synthetic peptides: the effects of sequence and solution environment. In Deamidation and Isoaspartate Formation in Peptides and Proteins pp 65–90 Edited by Aswad D. W. Ann Arbor, MI: CRC Press;
    [Google Scholar]
  5. Casadaban M. J., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli . J Mol Biol 138:179–207 [CrossRef]
    [Google Scholar]
  6. Chavous D. A., Jackson F. R., O'Connor C. M. 2001; Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci U S A 98:14814–14818 [CrossRef]
    [Google Scholar]
  7. Clarke S., Stephenson R. C., Lowenson J. D. 1992; Lability of asparagine and aspartic acid residues in proteins and peptides. In Stability of Protein Pharmaceuticals, part A: Chemical and Physical Pathways of Protein Degradation pp 1–29 Edited by Ahern T. J., Manning M. C. New York, NY: Plenum;
    [Google Scholar]
  8. Farrell M. J., Finkel S. E. 2003; The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J Bacteriol 185:7044–7052 [CrossRef]
    [Google Scholar]
  9. Finkel S. E., Kolter R. 1999; Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A 96:4023–4027 [CrossRef]
    [Google Scholar]
  10. Hassan H. M., Fridovich I. 1979; Paraquat and Escherichia coli: mechanism of production of extracellular superoxide radical. J Biol Chem 254:10846–10852
    [Google Scholar]
  11. Kagan R. M., Niewmierzycka A., Clarke S. 1997; Targeted gene disruption of the Caenorhabditis elegans l-isoaspartyl protein repair methyltransferase impairs survival of dauer stage nematodes. Arch Biochem Biophys 348:320–328 [CrossRef]
    [Google Scholar]
  12. Kim E., Lowenson J. D., MacLaren D. C., Clarke S., Young S. G. 1997; Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci U S A 94:6132–6137 [CrossRef]
    [Google Scholar]
  13. Kolter R., Siegele D. A., Tormo A. 1993; The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874 [CrossRef]
    [Google Scholar]
  14. Lazar S. W., Almiron M., Tormo A., Kolter R. 1998; Role of the Escherichia coli SurA protein in stationary-phase survival. J Bacteriol 180:5704–5711
    [Google Scholar]
  15. Li C., Clarke S. 1992; Distribution of an l-isoaspartyl protein methyltransferase in eubacteria. J Bacteriol 147:355–361
    [Google Scholar]
  16. Li C., Wu P. Y., Hsieh M. 1997; Growth-phase-dependent transcriptional regulation of the pcm and surE genes required for stationary-phase survival of Escherichia coli . Microbiology 143:3513–3520 [CrossRef]
    [Google Scholar]
  17. Lowenson J. D., Kim E., Young S. G., Clarke S. 2001; Limited accumulation of damaged proteins in l-isoaspartyl (d-aspartyl) O-methyltransferase-deficient mice. J Biol Chem 276:20695–20702 [CrossRef]
    [Google Scholar]
  18. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
    [Google Scholar]
  19. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Mudgett M. B., Clarke S. 1994; Hormonal and environmental responsiveness of a developmentally regulated protein repair l-isoaspartyl methyltransferase in wheat. J Biol Chem 269:25605–25612
    [Google Scholar]
  21. Neidhardt F. C., Bloch P. L., Smith D. F. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  22. Nyström T. 2003; Conditional senescence in bacteria: death of the immortals. Mol Microbiol 48:17–23 [CrossRef]
    [Google Scholar]
  23. Slonczewski J. L., Foster J. W. others 1996; pH-regulated genes and survival at extreme pH. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 1539–1549 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Stancik L. M., Stancik D. M., Schmidt B., Barnhart D. M., Yoncheva Y. N., Slonczewski J. L. 2002; pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli . J Bacteriol 184:4246–4258 [CrossRef]
    [Google Scholar]
  25. Storz G., Zheng M. 2000; Oxidative stress. In Bacterial Stress Responses pp 47–60 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Szymanska G., Leszyk J. D., O'Connor C. M. 1998; Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm: implications for protein repair. J Biol Chem 273:28516–28523 [CrossRef]
    [Google Scholar]
  27. Visick J. E., Clarke S. 1995; Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins. Mol Microbiol 16:835–845 [CrossRef]
    [Google Scholar]
  28. Visick J. E., Cai H., Clarke S. 1998a; The l-isoaspartyl protein repair methyltransferase enhances survival of aging Escherichia coli subjected to secondary environmental stresses. J Bacteriol 180:2623–2629
    [Google Scholar]
  29. Visick J. E., Ichikawa J. K., Clarke S. 1998b; Mutations in the Escherichia coli surE gene increase isoaspartyl accumulation in a strain lacking the pcm repair methyltransferase but suppress stress-survival phenotypes. FEMS Microbiol Lett 167:19–25 [CrossRef]
    [Google Scholar]
  30. Vulíc M., Kolter R. 2001; Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics 158:519–526
    [Google Scholar]
  31. Vulíc M., Kolter R. 2002; Alcohol-induced delay of viability loss in stationary-phase cultures of Escherichia coli . J Bacteriol 184:2898–2905 [CrossRef]
    [Google Scholar]
  32. Weiner L., Model P. 1994; Role of an Escherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci U S A 91:2191–2195 [CrossRef]
    [Google Scholar]
  33. Yura T., Kanemori M., Morita M. T. 2000; The heat shock response: regulation and function. In Bacterial Stress Responses pp 3–18 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Zhang R. G., Skarina T., Katz J. E. 8 other authors 2001; Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. Structure 9:1095–1106 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27835-0
Loading
/content/journal/micro/10.1099/mic.0.27835-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error