1887

Abstract

The lipopeptide antibiotic friulimicin, produced by , is an effective drug against Gram-positive bacteria, such as methicillin-resistant and strains. Friulimicin consists of a cyclic peptide core of ten amino acids and an acyl residue linked to an exocyclic amino acid. The acyl residue is essential for antibiotic activity, varies in length from C13 to C15, and carries a characteristic double bond at position Δ3. Sequencing of a DNA fragment adjacent to a previously described fragment encoding some of the friulimicin biosynthetic genes revealed several genes whose gene products resemble enzymes of lipid metabolism. One of these genes, , encodes an acyl-CoA dehydrogenase homologue. To elucidate the function of the LipB protein, a insertion mutant was generated and the friulimicin derivative (FR242) produced by the mutant was purified. FR242 had antibiotic activity lower than friulimicin in a bioassay. Gas chromatography showed that the acyl residue of wild-type friulimicin contains a double bond, whereas a saturated bond was present in FR242. These results were confirmed by the heterologous expression of in T7, which led to the production of unsaturated fatty acids not found in the T7 parent strain. These results indicate that the acyl-CoA dehydrogenase LipB is involved in the introduction of the unusual Δ3 double bond into the acyl residue of friulimicin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27844-0
2005-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511963.html?itemId=/content/journal/micro/10.1099/mic.0.27844-0&mimeType=html&fmt=ahah

References

  1. Alijah R., Dorendorf J., Talay S., Wohlleben W, Pühler A. 1991; Genetic analysis of the phosphinothricin-tripeptide biosynthetic pathway of Streptomyces viridochromogenes Tü494. Appl Microbiol Biotechnol 6:749–755
    [Google Scholar]
  2. Altenbuchner J., Viell P., Pelletier I. 1992; Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216:457–466
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  4. Aretz W., Meiwes G., Seibert G., Vobis G., Wink J. 2000; Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. I. Taxonomic studies of the producing microorganism and fermentation. J Antibiot (Tokyo) 53:807–815 [CrossRef]
    [Google Scholar]
  5. Barie P. S. 1998; Antibiotic-resistant Gram-positive cocci: implications for surgical practice. World J Surg 22:118–126 [CrossRef]
    [Google Scholar]
  6. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147 [CrossRef]
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M. 1987; Xl1-Blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. Focus 5:376–378
    [Google Scholar]
  8. Chong P. P., Podmore S., Kieser H. M., Redenbach M., Turgay K., Marahiel M., Hopwood D. A., Smith C. 1998; Physical identification of a chromosomal locus encoding biosynthetic genes for the lipopeptide calcium-dependent antibiotic (CDA) from Streptomyces coelicolor A3(2). Microbiology 144:193–199 [CrossRef]
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J. & 39 other authors; 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Cole S. T., Eiglmeier K., Parkhill J. & 41 other authors; 2001; Massive gene decay in the leprosy Bacillus. Nature 409:1007–1011 [CrossRef]
    [Google Scholar]
  11. Cropp T. A., Smogowicz A. A., Hafner E. W., Denoya C. D., McArthur H. A., Reynolds K. A. 2000; Fatty-acid biosynthesis in a branched-chain alpha-keto acid dehydrogenase mutant of Streptomyces avermitilis.. Can J Microbiol 46:506–514 [CrossRef]
    [Google Scholar]
  12. Dieckmann R, von Döhren H. 1997; Structural model of acyl carrier domains in integrated biosynthetic system forming peptides, polyketides and fatty acids based on analogy to the E. coli acyl carrier protein. In Developments in Industrial Microbiology–GMBIM 1996 pp 79–85 Edited by Baltz R., Hegemann G., Skatrud P. Washington, DC: Society for Industrial Microbiology;
    [Google Scholar]
  13. Duitman E. H., Hamoen L. W., Rembold M. & 10 other authors; 1999; The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96:13294–13299 [CrossRef]
    [Google Scholar]
  14. DuPlessis E. R., Pellet J., Stankovich M. T., Thorpe C. 1998; Oxidase activity of the acyl-CoA dehydrogenases. Biochemistry 37:10469–10477 [CrossRef]
    [Google Scholar]
  15. Fischer J. 1996 Entwicklung eines regulierbaren Expressionssystems zur effizienten Synthese rekombinanter Proteine in Streptomyces lividans PhD thesis University of Stuttgart; Germany:
    [Google Scholar]
  16. Flett F., Mersinias V., Smith C. P. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229 [CrossRef]
    [Google Scholar]
  17. Guenzi E., Galli G., Grgurina I., Gross D. C., Grandi G. 1998; Characterization of the syringomycin synthetase gene cluster. J Biol Chem 273:32857–32863 [CrossRef]
    [Google Scholar]
  18. Heinzelmann E., Kienzlen G., Kaspar S., Recktenwald J., Wohlleben W., Schwartz D. 2001; The phosphinomethylmalate isomerase gene pmi, encoding an aconitase-like enzyme, is involved in the synthesis of phosphinothricin tripeptide inStreptomyces viridochromogenes . Appl Environ Microbiol 67:3603–3609 [CrossRef]
    [Google Scholar]
  19. Heinzelmann E., Berger S., Puk O., Reichenstein B., Wohlleben W., Schwartz D. 2003; A glutamate mutase is involved in the biosynthesis of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis . Antimicrob Agents Chemother 47:447–457 [CrossRef]
    [Google Scholar]
  20. Hiltunen J. K., Qin Y.-M. 2000; β-Oxidation-strategies for the metabolism of a wide variety of acyl-CoA esters. Biochim Biophys Acta 148:117–128
    [Google Scholar]
  21. Hojati Z., Milne C., Harvey B. 9 other authors 2002; Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor . Chem Biol 9:1175–1187 [CrossRef]
    [Google Scholar]
  22. Hopwood D. A., Bibb M. J., Chater K. F. 7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  23. Hu Y., Helm J. S., Chen L., Ye X. Y., Walker S. 2003; Ramoplanin inhibits bacterial transglycosylases by binding as a dimer to lipid II. J Am Chem Soc 125:8736–8737 [CrossRef]
    [Google Scholar]
  24. Kieweg V., Nandy A, Kräutle F. G. 8 other authors 1997; Biochemical characterization of purified, human recombinant Lys304→Glu medium-chain acyl-CoA dehydrogenase containing the common disease-causing mutation and comparison with the normal enzyme. Eur J Biochem 246:548–556 [CrossRef]
    [Google Scholar]
  25. Kim J.-J., Miura R. 2004; Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Eur J Biochem 271:483–493 [CrossRef]
    [Google Scholar]
  26. Konz D., Doekel S., Marahiel M. A. 1999; Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181:133–140
    [Google Scholar]
  27. Lakey J. H., Lea E. J., Rudd B. A., Wright H. M., Hopwood D. A. 1983; A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity. J Gen Microbiol 129:3565–3573
    [Google Scholar]
  28. Lea W., Abbas A. S., Sprecher H., Vockley J., Schulz H. 2000; Long-chain acyl-CoA-dehydrogenase is a key enzyme in the mitochondrial β-oxidation of unsaturated fatty acids. Biochim Biophys Acta 1485121–128 [CrossRef]
    [Google Scholar]
  29. Marrakchi H., Choi K. H., Rock C. O. 2002; A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816 [CrossRef]
    [Google Scholar]
  30. McHenney M. A., Hosted T. J., Dehoff B. S., Rosteck P. R., Baltz R. H. Jr 1998; Molecular cloning and physical mapping of the daptomycin gene cluster from Streptomyces roseosporus . J Bacteriol 180:143–151
    [Google Scholar]
  31. Moellering R. C. Jr 1998; The specter of glycopeptide resistance: current trends and future considerations. J Med 104:3S–6S [CrossRef]
    [Google Scholar]
  32. Muth G., Nußbaumer B., Wohlleben W., Pühler A. 1989; A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348 [CrossRef]
    [Google Scholar]
  33. Nicholas K. B., Nicholas H. B., Deerfield D. W. Jr II 1997; GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 4:14
    [Google Scholar]
  34. Omura S., Ikeda H., Ishikawa J. 11 other authors 2001; Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220 [CrossRef]
    [Google Scholar]
  35. Pfeifer V., Nicholson G. J., Ries J., Recktenwald J., Schefer A. B., Shawky R. M., Wohlleben W., Pelzer S, Schröder J. 2001; A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. J Biol Chem 276:38370–38377 [CrossRef]
    [Google Scholar]
  36. Rost B. 1996; PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539
    [Google Scholar]
  37. Rost B., Sander C. 1993; Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 20:584–599
    [Google Scholar]
  38. Ryding N. J., Anderson T. B., Champness W. C. 2002; Regulation of the Streptomyces coelicolor calcium-dependent antibiotic byabsA, encoding a cluster-linked two-component system. J Bacteriol 184:794–805 [CrossRef]
    [Google Scholar]
  39. Sambrook J., Fritsch T., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  41. Schäfer A., Kalinowski J., Simon R., Seep-Feldhaus A.-H., Pühler A. 1990; High-frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172:1663–1666
    [Google Scholar]
  42. Schauwecker F., Pfennig F., Schroeder W., Keller U. 1998; Molecular cloning of the actinomycin synthetase gene cluster from Streptomyces chrysomallus and functional heterologous expression of the gene encoding actinomycin synthetase II. J Bacteriol 180:2468–2474
    [Google Scholar]
  43. Silverman J. A., Perlmutter N. G., Shapiro H. M. 2003; Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544 [CrossRef]
    [Google Scholar]
  44. Staden R., McLachlan A. D. 1982; Codon preference and its use in identifying protein coding regions in large DNA sequences. Nucleic Acids Res 10:141–156 [CrossRef]
    [Google Scholar]
  45. Steller S., Vollenbroich D., Leenders F., Stein T., Conrad B., Hofemeister J., Jacques P., Thonart P., Vater J. 1999; Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41 [CrossRef]
    [Google Scholar]
  46. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  47. Tosato V., Albertini A. M., Zotti M., Sonda S., Brushi C. V. 1997; Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450 [CrossRef]
    [Google Scholar]
  48. Vértesy L., Ehlers E., Kogler H., Kurz M., Meiwes J., Seibert G., Vogel M., Hammann P. 2000; Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. II. Isolation and structural characterization. J Antibiot (Tokyo) 53:816–827 [CrossRef]
    [Google Scholar]
  49. Weber M. H., Klein W., Niess U. M., Marahiel M. A, Müller L. 2001; Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39:1321–1329 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27844-0
Loading
/content/journal/micro/10.1099/mic.0.27844-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error