1887

Abstract

The biofilm-associated protein (Bap) is a surface protein implicated in biofilm formation by isolated from chronic mastitis infections. The gene is carried in a putative composite transposon inserted in SaPIbov2, a mobile staphylococcal pathogenicity island. In this study, orthologue genes from several staphylococcal species, including , , , and , were identified, cloned and sequenced. Sequence analysis comparison of the gene from these species revealed a very high sequence similarity, suggesting the horizontal gene transfer of SaPIbov2 amongst them. However, sequence analyses of the flanking region revealed that the gene of these species was not contained in the SaPIbov2 pathogenicity island. Although they did not contain the operon, all the coagulase-negative staphylococcal isolates harbouring were strong biofilm producers. Disruption of the gene in abolished its capacity to form a biofilm, whereas heterologous complementation of a biofilm-negative strain of with the Bap protein from bestowed the capacity to form a biofilm on a polystyrene surface. Altogether, these results demonstrate that Bap orthologues from coagulase-negative staphylococci induce an alternative mechanism of biofilm formation that is independent of the PIA/PNAG exopolysaccharide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27865-0
2005-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512465.html?itemId=/content/journal/micro/10.1099/mic.0.27865-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Amorena B., Gracia E., Oteiza C, Monzón M., Leiva J., Pérez M., Alabart J. L., Hernández-Yago J. 1999; Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro . J Antimicrob Chemother 44:43–55 [CrossRef]
    [Google Scholar]
  3. Arrizubieta M. J., Toledo-Arana A., Amorena B., Penadés J. R., Lasa I. 2004; Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus . J Bacteriol 186:7490–7498 [CrossRef]
    [Google Scholar]
  4. Augustin J., Rosenstein R., Wieland B., Schneider U., Schnell N., Engelke G., Entian K. D., Gotz F. 1992; Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis . Eur J Biochem 204:1149–1154 [CrossRef]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1990 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Brückner R. 1997; Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus . FEMS Microbiol Lett 151:1–8 [CrossRef]
    [Google Scholar]
  7. Burriel A. R., Dagnall G. J. 1997; Leukotoxic factors produced by staphylococci of ovine origin. Microbiol Res 152:247–250 [CrossRef]
    [Google Scholar]
  8. Caiazza N. C., O'Toole G. A. 2003; Alpha-toxin is required for biofilm formation by Staphylococcus aureus . J Bacteriol 185:3214–3217 [CrossRef]
    [Google Scholar]
  9. Christensen G. D., Bisno A. L., Parisi J. T., McLaughlin B., Hester M. G., Luther R. W. 1982; Nosocomial septicemia due to multiply antibiotic-resistant Staphylococcus epidermidis . Ann Intern Med 96:1–10 [CrossRef]
    [Google Scholar]
  10. Combet C., Blanchet C., Geourjon C., Deleage G. 2000; NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150 [CrossRef]
    [Google Scholar]
  11. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745 [CrossRef]
    [Google Scholar]
  12. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F. 1999; The intercellular adhesion ( ica ) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433
    [Google Scholar]
  13. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penadés J. R. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896 [CrossRef]
    [Google Scholar]
  14. Cucarella C., Tormo M. A., Knecht E., Amorena B., Lasa I., Foster T. J., Penadés J. R. 2002; Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186 [CrossRef]
    [Google Scholar]
  15. Cucarella C., Tormo M. A., Ubeda C., Trotonda M. P., Monzon M., Peris C., Amorena B., Lasa I., Penadés J. R. 2004; Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus . Infect Immun 72:2177–2185 [CrossRef]
    [Google Scholar]
  16. Deinhofer M., Pernthaner A. 1995; Staphylococcus spp. as mastitis-related pathogens in goat milk. Vet Microbiol 43:161–166 [CrossRef]
    [Google Scholar]
  17. Duthie E. S., Lorenz L. L. 1952; Staphylococcal coagulase: mode of action and antigenicity. J Gen Microbiol 6:95–107 [CrossRef]
    [Google Scholar]
  18. Espinosa-Urgel M., Salido A., Ramos J. L. 2000; Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369 [CrossRef]
    [Google Scholar]
  19. Gotz F. 2002; Staphylococcus and biofilms. Mol Microbiol 43:1367–1378 [CrossRef]
    [Google Scholar]
  20. Götz F., Schumaker B. 1987; Improvements of protoplast transformation in Staphylococcus carnosus . FEMS Microbiol Lett 40:285–288 [CrossRef]
    [Google Scholar]
  21. Götz F., Kreutz B., Schleifer K. H. 1983; Protoplast transformation of Staphylococcus carnosus by plasmid DNA. Mol Gen Genet 189:340–342 [CrossRef]
    [Google Scholar]
  22. Heilmann C., Gerke C., Perdreau-Remington F., Götz F. 1996a; Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282
    [Google Scholar]
  23. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Götz F. 1996b; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol 20:1083–1091 [CrossRef]
    [Google Scholar]
  24. Herron L. L., Chakravarty R., Dwan C., Fitzgerald J. R., Musser J. M., Retzel E., Kapur V. 2002; Genome sequence survey identifies unique sequences and key virulence genes with unusual rates of amino acid substitution in bovine Staphylococcus aureus . Infect Immun 70:3978–3981 [CrossRef]
    [Google Scholar]
  25. Huber B., Riedel K., Kothe M., Givskov M., Molin S., Eberl L. 2002; Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol 46:411–426 [CrossRef]
    [Google Scholar]
  26. Jarp J. 1991; Classification of coagulase-negative staphylococci isolated from bovine clinical and subclinical mastitis. Vet Microbiol 27:151–158 [CrossRef]
    [Google Scholar]
  27. Kies S., Otto M., Vuong C., Gotz F. 2001; Identification of the sigB operon in Staphylococcus epidermidis : construction and characterization of a sigB deletion mutant. Infect Immun 69:7933–7936 [CrossRef]
    [Google Scholar]
  28. Kloos W. E., Schleifer K. H. 1975; Simplified scheme for routine identification of human Staphylococcus species. J Clin Microbiol 1:82–88
    [Google Scholar]
  29. Kreiswirth B. N., Lofdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712 [CrossRef]
    [Google Scholar]
  30. Kristich C. J., Li Y. H., Cvitkovitch D. G., Dunny G. M. 2004; Esp-independent biofilm formation by Enterococcus faecalis . J Bacteriol 186:154–163 [CrossRef]
    [Google Scholar]
  31. Lim Y., Jana M., Luong T. T., Lee C. Y. 2004; Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus . J Bacteriol 186:722–729 [CrossRef]
    [Google Scholar]
  32. Madoff L. C., Michel J. L., Gong E. W., Kling D. E., Kasper D. L. 1996; Group B streptococci escape host immunity by deletion of tandem repeat elements of the alpha C protein. Proc Natl Acad Sci U S A 93:4131–4136 [CrossRef]
    [Google Scholar]
  33. McClelland M., Sanderson K. E., Spieth J. 23 other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef]
    [Google Scholar]
  34. Navarre W. W., Schneewind O. 1994; Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol Microbiol 14:115–121 [CrossRef]
    [Google Scholar]
  35. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  36. Rupp M. E., Archer G. L. 1994; Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19:231–243 quiz 244–245
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Senelar R., Esteve C., Serron B. 1976; Nouvelle technique simple de preparation des lymphocytes, par elevation de la temperature, pour étude en microscopie électronique à balayage. Sémin Technol INSERM 57:287
    [Google Scholar]
  39. Shankar V., Baghdayan A. S., Huycke M. M., Lindahl G., Gilmore M. S. 1999; Infection-derived Enterococcus faecalis strains are enriched in esp , a gene encoding a novel surface protein. Infect Immun 67:193–200
    [Google Scholar]
  40. Shankar N., Baghdayan A. S., Gilmore M. S. 2002; Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis . Nature 417:746–750 [CrossRef]
    [Google Scholar]
  41. Stoodley P., Sauer K., Davies D. G., Costerton J. W. 2002; Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209 [CrossRef]
    [Google Scholar]
  42. Thumm G., Götz F. 1997; Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus . Mol Microbiol 23:1251–1265 [CrossRef]
    [Google Scholar]
  43. Timms L. L., Schultz L. H. 1987; Dynamics and significance of coagulase-negative staphylococcal intramammary infections. J Dairy Sci 70:2648–2657 [CrossRef]
    [Google Scholar]
  44. Toledo-Arana A., Valle J., Solano C. 7 other authors 2001; The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545 [CrossRef]
    [Google Scholar]
  45. Tormo M. A., Marti M., Valle J., Manna A. C., Cheung A. L., Lasa I., Penadés J. R. 2005; SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol 187:2348–2356 [CrossRef]
    [Google Scholar]
  46. Trinidad P., Nickerson S. C., Alley T. K. 1990; Prevalence of intramammary infection and teat canal colonization in unbred and primigravid dairy heifers. J Dairy Sci 73:107–114 [CrossRef]
    [Google Scholar]
  47. Ubeda C., Tormo M. A., Cucarella C., Trotonda P., Foster T. J., Lasa I., Penadés J. R. 2003; Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol Microbiol 49:193–210 [CrossRef]
    [Google Scholar]
  48. Valle J., Toledo-Arana A., Berasain C., Ghigo J. M., Amorena B., Penadés J. R., Lasa I. 2003; SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus . Mol Microbiol 48:1075–1087 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27865-0
Loading
/content/journal/micro/10.1099/mic.0.27865-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error