1887

Abstract

is one of the leading causes of hospital-acquired infections, and indwelling medical devices are especially prone to infection. expressing aggregation substance (Agg) adheres to biomaterial surfaces by means of positive cooperativity, i.e. the ability of one adhering organism to stimulate adhesion of other organisms in its immediate vicinity. In this study, atomic force microscopy (AFM) was used to measure the specificity and non-specificity of interaction forces between cells with and without Agg. Bacteria were attached to a substratum surface and a tip-less cantilever. Two strains expressing different forms of Agg showed nearly twofold higher interaction forces between bacterial cells than a strain lacking Agg [adhesive force ( ), −1·3 nN]. The strong interaction forces between the strains with Agg were reduced after adsorption of antibodies against Agg from −2·6 and −2·3 nN to −1·2 and −1·3 nN, respectively. This suggests that the non-specific interaction force between the enterococci amounts to approximately 1·2 nN, while the specific force component is only twofold stronger. Comparison of the results of the AFM interaction forces with the positive cooperativity after adhesion to a biomaterial in a parallel-plate flow chamber showed that in the absence of strong interaction forces between the cells, positive cooperativity was also absent. In conclusion, this is believed to be the first time that the influence of specific antibodies on interaction forces between cells has been demonstrated by AFM, thereby experimentally distinguishing between specific and non-specific force components.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27877-0
2005-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512459.html?itemId=/content/journal/micro/10.1099/mic.0.27877-0&mimeType=html&fmt=ahah

References

  1. Binnig G., Quate C. F., Gerber C. 1986; Atomic force microscope. Phys Rev Lett 56:930–933 [CrossRef]
    [Google Scholar]
  2. Bolshakova A. V., Kiselyova O. I., Filonov A. S., Frolova O. Y., Lyubchenko Y. L., Yaminsky I. V. 2001; Comparative studies of bacteria with an atomic force microscopy operating in different modes. Ultramicroscopy 86:121–128 [CrossRef]
    [Google Scholar]
  3. Bowen W. R., Fenton A. S., Lovitt R. W., Wright C. J. 2002; The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique. Biotechnol Bioeng 79:170–179 [CrossRef]
    [Google Scholar]
  4. Busscher H. J., Van der Mei H. C. 1995; Use of flow chamber devices and image analysis methods to study microbial adhesion. Methods Enzymol 253:455–477
    [Google Scholar]
  5. Busscher H. J., Cowan M. M., Van der Mei H. C. 1992; On the relative importance of specific and non-specific approaches to oral microbial adhesion. FEMS Microbiol Rev 8:199–209
    [Google Scholar]
  6. Clewell D. B., An F. Y., White B. A., Gawron-Burke C. 1985; Streptococcus faecalis sex pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn 918 . J Bacteriol 162:1212–1220
    [Google Scholar]
  7. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [CrossRef]
    [Google Scholar]
  8. De Boever E. H., Clewell D. B., Fraser C. M. 2000; Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response. Mol Microbiol 37:1327–1341 [CrossRef]
    [Google Scholar]
  9. Dickinson G. M., Bisno A. L. 1989; Infections associated with indwelling devices: infections related to extravascular devices. Antimicrob Agents Chemother 33:602–607 [CrossRef]
    [Google Scholar]
  10. Dufrêne Y. F. 2000; Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys J 78:3286–3291 [CrossRef]
    [Google Scholar]
  11. Dufrêne Y. F. 2003; Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 6:317–323 [CrossRef]
    [Google Scholar]
  12. Dunny G. M., Brown B. L., Clewell D. B. 1978; Induced cell aggregation and mating in Streptococcus faecalis : evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A 75:3479–3483 [CrossRef]
    [Google Scholar]
  13. Galli D., Lottspeich F., Wirth R. 1990; Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol 4:895–904 [CrossRef]
    [Google Scholar]
  14. Ike Y., Craig R. A., White B. A., Yagi Y., Clewell D. B. 1983; Modification of Streptococcus faecalis sex pheromones after acquisition of plasmid DNA. Proc Natl Acad Sci U S A 80:5369–5373 [CrossRef]
    [Google Scholar]
  15. Jacob A. E., Hobbs S. J. 1974; Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes . J Bacteriol 117:360–372
    [Google Scholar]
  16. Jett B. D., Huycke M. M., Gilmore M. S. 1994; Virulence of enterococci. Clin Microbiol Rev 7:462–478
    [Google Scholar]
  17. Lower S. K., Hochella M. F. Jr, Beveridge T. J. 2001; Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science 292:1360–1363 [CrossRef]
    [Google Scholar]
  18. Muscholl A., Galli D., Wanner G., Wirth R. 1993; Sex pheromone plasmid pAD1-encoded aggregation substance of Enterococcus faecalis is positively regulated in trans by traE1. Eur J Biochem 214:333–338 [CrossRef]
    [Google Scholar]
  19. Muscholl-Silberhorn A. 1998; Analysis of the clumping-mediating domain(s) of sex pheromone plasmid pAD1-encoded aggregation substance. Eur J Biochem 258:515–520 [CrossRef]
    [Google Scholar]
  20. Muscholl-Silberhorn A. 1999; Cloning and functional analysis of Asa373, a novel adhesin unrelated to the other sex pheromone plasmid-encoded aggregation substances of Enterococcus faecalis . Mol Microbiol 34:620–630 [CrossRef]
    [Google Scholar]
  21. Poelstra K. A., Gottenbos B., Grainger D. W., Van Horn J. R., Busscher H. J, Van der Mei H. C. 2000; Pooled human immunoglobulins reduce adhesion of Pseudomonas aeruginosa in a parallel plate flow chamber. J Biomed Mater Res 51:224–232 [CrossRef]
    [Google Scholar]
  22. Razatos A., Ong Y. L., Sharma M. M., Georgiou G. 1998; Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci U S A 95:11059–11064 [CrossRef]
    [Google Scholar]
  23. Richards M. J., Edwards J. R., Culver D. H., Gaynes R. P. 2000; Nosocomial infections in combined medical–surgical intensive care units in the United States. Infect Control Hosp Epidemiol 21:510–515 [CrossRef]
    [Google Scholar]
  24. Ruoff K. L., Murtagh M. J., Spargo J. D., Ferraro M. J, De la Maza L. 1990; Species identities of enterococci isolated from clinical specimens. J Clin Microbiol 28:435–437
    [Google Scholar]
  25. Sjollema J., Busscher H. J. 1990; Deposition of polystyrene particles in a parallel plate flow cell. 2. Pair distribution functions between deposited particles. Colloids Surf 47:337–352 [CrossRef]
    [Google Scholar]
  26. Vadillo-Rodriguez V., Busscher H. J., Norde W., De Vries J., Dijkstra R. J., Stokroos I., Van der Mei H. C. 2004; Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Appl Environ Microbiol 70:5441–5446 [CrossRef]
    [Google Scholar]
  27. Van der Mei H. C., Busscher H. J., Bos R., De Vries J., Boonaert C., Dufrêne Y. F. 2000; Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. Biophys J 78:2668–2674 [CrossRef]
    [Google Scholar]
  28. Van Oss C. J. 1991; Interaction forces between biological and other polar entities in water – how many different primary interaction forces are there?. J Disp Sci Technol 12:201–220 [CrossRef]
    [Google Scholar]
  29. Van Raamsdonk M., Geertsema-Doornbusch G. I., De Soet J. J., Busscher H. J., De Graaf J, Van der Mei H. C. 1995; Physicochemical aspects of microbial adhesion – influence of antibody adsorption on the deposition of Streptococcus sobrinus in a parallel-plate flow chamber. Colloids Surf B Biointerfaces 4:401–410 [CrossRef]
    [Google Scholar]
  30. Waar K., Muscholl-Silberhorn A. B., Willems R., Slooff M. J., Harmsen H. J. M., Degener J. E. 2002a; Genogrouping and incidence of virulence factors of Enterococcus faecalis in liver transplant patients are different from blood cultures or feces isolates. J Infect Dis 185:1121–1127 [CrossRef]
    [Google Scholar]
  31. Waar K., Harmsen H. J. M., Degener J. E., Busscher H. J, Van der Mei H. C. 2002b; Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials. Microbiology 148:1863–1870
    [Google Scholar]
  32. Yu J. L., Andersson R., Ljungh A. 1996; Infections associated with biliary drains. Scand J Gastroenterol 31:625–630 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27877-0
Loading
/content/journal/micro/10.1099/mic.0.27877-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error