1887

Abstract

The function of LuxR homologues as quorum sensors is mediated by the binding of -acyl--homoserine lactone (AHL) signal molecules to the N-terminal receptor site of the proteins. In this study, site-directed mutagenesis was carried out of the amino acid residues comprising the receptor site of LuxR from , and the ability of the L42A, L42S, Y62F, W66F, D79N, W94D, V109D, V109T and M135A LuxR mutant proteins to activate green fluorescent protein expression from a promoter was measured. X-ray crystallographic studies of the LuxR homologue TraR indicated that residues Y53 and W57 form hydrogen bonds to the 1-carbonyl group and the ring carbonyl group, respectively, of the cognate AHL signal. Based on the activity and signal specificity of the LuxR mutant proteins, and on molecular modelling, a model is suggested in which Y62 (corresponding to Y53 in TraR) forms a hydrogen bond with the ring carbonyl group rather than the 1-carbonyl group, while W66 (corresponding to W57 in TraR) forms a hydrogen bond to the 1-carbonyl group. This flips the position of the acyl side chain in the LuxR/signal molecule complex compared to the TraR/signal molecule complex. Halogenated furanones from the marine alga and the synthetic signal analogue -(sulfanylacetyl)--homoserine lactone can block quorum sensing. The LuxR mutant proteins were insensitive to inhibition by -(propylsulfanylacetyl)--homoserine lactone. In contrast, the mutations had only a minor effect on the sensitivity of the proteins to halogenated furanones, and the data strongly suggest that these compounds do not compete in a ‘classic’ way with -3-oxohexanoyl--homoserine lactone for the binding site. Based on modelling and experimental data it is suggested that these compounds bind in a non-agonist fashion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27954-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3589.html?itemId=/content/journal/micro/10.1099/mic.0.27954-0&mimeType=html&fmt=ahah

References

  1. Andersen J. B., Heydorn A., Hentzer M., Eberl L., Geisenberger O., Christensen B. B., Molin S., Givskov M. 2001; gfp -based N -acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585 [CrossRef]
    [Google Scholar]
  2. Atkinson S., Throup J. P., Stewart G. S., Williams P. 1999; A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277
    [Google Scholar]
  3. Bauer W. D., Robinson J. B. 2002; Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechnol 13:234–237 [CrossRef]
    [Google Scholar]
  4. Brady G. P., Jr, Stouten P. F. 2000; Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401 [CrossRef]
    [Google Scholar]
  5. Cha C., Gao P., Chen Y. C., Shaw P. D., Farrand S. K. 1998; Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129 [CrossRef]
    [Google Scholar]
  6. Chai Y., Winans S. C. 2004; Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol Microbiol 51:765–776
    [Google Scholar]
  7. Choi S. H., Greenberg E. P. 1991; The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci U S A 88:11115–11119 [CrossRef]
    [Google Scholar]
  8. Christensen A. B., Riedel K., Eberl L., Flodgaard L. R., Molin S., Gram L., Givskov M. 2003; Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. Microbiology 149:471–483 [CrossRef]
    [Google Scholar]
  9. Clark J. D., Maaløe O. 1967; DNA replication and the division cycles in Escherichia coli . J Mol Biol 23:99–112 [CrossRef]
    [Google Scholar]
  10. de Nys R., Wright A., Konig G. M., Sticher O. 1993; New halogenated furanones from the marine alga Delisea pulchra (cf. Fimbriata ). Tetrahedron 49:11213–11220 [CrossRef]
    [Google Scholar]
  11. Givskov M., de Nys R., Manefield M., Gram L., Maximilien R., Eberl L., Molin S., Steinberg P. D., Kjelleberg S. 1996; Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622
    [Google Scholar]
  12. Goloubinoff P., Gatenby A. A., Lorimer G. H. 1989; GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli . Nature 337:44–47 [CrossRef]
    [Google Scholar]
  13. Hanzelka B. L., Greenberg E. P. 1995; Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J Bacteriol 177:815–817
    [Google Scholar]
  14. Hentzer M., Riedel K., Rasmussen T. B. 9 other authors 2002; Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102
    [Google Scholar]
  15. Hentzer M., Wu H., Andersen J. B. 15 other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815 [CrossRef]
    [Google Scholar]
  16. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  17. Kaplan H. B., Greenberg E. P. 1987; Overproduction and purification of the luxR gene product: transcriptional activator of the Vibrio fischeri luminescence system. Proc Natl Acad Sci U S A 84:6639–6643 [CrossRef]
    [Google Scholar]
  18. Kiratisin P., Tucker K. D., Passador L. 2002; LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol 184:4912–4919 [CrossRef]
    [Google Scholar]
  19. Lamb J. R., Patel H., Montminy T., Wagner V. E., Iglewski B. H. 2003; Functional domains of the RhlR transcriptional regulator of Pseudomonas aeruginosa . J Bacteriol 185:7129–7139 [CrossRef]
    [Google Scholar]
  20. Luo Z. Q., Smyth A. J., Gao P., Qin Y., Farrand S. K. 2003a; Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing transcriptional activator. J Biol Chem 278:13173–13182 [CrossRef]
    [Google Scholar]
  21. Luo Z. Q., Su S., Farrand S. K. 2003b; In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acyl-homoserine lactone ligands: kinetics and consequences. J Bacteriol 185:5665–5672 [CrossRef]
    [Google Scholar]
  22. Manefield M., de Nys R., Kumar N., Read R., Givskov M., Steinberg P., Kjelleberg S. 1999; Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291 [CrossRef]
    [Google Scholar]
  23. Manefield M., Harris L., Rice S. A., de Nys R., Kjelleberg S. 2000; Inhibition of luminescence and virulence in the black tiger prawn ( Penaeus monodon ) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 66:2079–2084 [CrossRef]
    [Google Scholar]
  24. Manefield M., Welch M., Givskov M., Salmond G. P., Kjelleberg S. 2001; Halogenated furanones from the red alga, Delisea pulchra , inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora . FEMS Microbiol Lett 205:131–138 [CrossRef]
    [Google Scholar]
  25. Manefield M., Rasmussen T. B., Henzter M., Andersen J. B., Steinberg P., Kjelleberg S., Givskov M. 2002; Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127
    [Google Scholar]
  26. Manny A. J., Kjelleberg S., Kumar N., de Nys R., Read R., Steinberg P. 1997; Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron 53:15813–15826 [CrossRef]
    [Google Scholar]
  27. Marketon M. M., Gronquist M. R., Eberhard A., Gonzales J. E. 2002; Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N -acyl homoserine lactone. J Bacteriol 184:5686–5695 [CrossRef]
    [Google Scholar]
  28. Martinelli D., Grossmann G., Séquin U., Brandl H., Bachofen R. 2004; Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum . BMC Microbiol 4:25 [CrossRef]
    [Google Scholar]
  29. Medina G., Juarez K., Valderrama B., Soberon-Chavez G. 2003; Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983 [CrossRef]
    [Google Scholar]
  30. Minogue T. D., Wehland-von Trebra M., Bernhard F., von Bodman S. B. 2002; The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii : evidence for a repressor function. Mol Microbiol 44:1625–1635 [CrossRef]
    [Google Scholar]
  31. Olsen J. A., Severinsen R., Rasmussen T. B., Hentzer M., Givskov M., Nielsen J. 2002; Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett 12:325–328 [CrossRef]
    [Google Scholar]
  32. Persson T., Hansen T. H., Rasmussen T. B., Skindersøe M. E., Givskov M., Nielsen J. 2005; Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3:253–262 [CrossRef]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schaefer A. L., Hanzelka B. L., Eberhard A., Greenberg E. P. 1996; Quorum sensing in Vibrio fischeri : probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 178:2897–2901
    [Google Scholar]
  35. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079 [CrossRef]
    [Google Scholar]
  36. Shadel G. S., Young R., Baldwin T. O. 1990; Use of regulated cell lysis in a lethal genetic selection in Escherichia coli : identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744. J Bacteriol 172:3980–3987
    [Google Scholar]
  37. Slock J., VanRiet D., Kolibachuk D., Greenberg E. P. 1990; Critical regions of the Vibrio fischeri LuxR protein defined by mutational analysis. J Bacteriol 172:3974–3979
    [Google Scholar]
  38. Smith R. S., Iglewski B. H. 2003; P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60 [CrossRef]
    [Google Scholar]
  39. Smith K. M., Bu Y., Suga H. 2003; Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 10:81–89 [CrossRef]
    [Google Scholar]
  40. Urbanowski M. L., Lostroh C. P., Greenberg E. P. 2004; Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 186:631–637 [CrossRef]
    [Google Scholar]
  41. Vannini A., Volpari C., Gargioli C., Muraglia E., Cortese R., De Francesco R., Neddermann P., Marco S. D. 2002; The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401 [CrossRef]
    [Google Scholar]
  42. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095 [CrossRef]
    [Google Scholar]
  43. Wells P. R. 1963; Enol lactones of dibromoacetylacrylic acid. Aust J Chem 16:165–169 [CrossRef]
    [Google Scholar]
  44. Whitehead N. A., Barnard A. M., Slater H., Simpson N. J., Salmond G. P. 2001; Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404 [CrossRef]
    [Google Scholar]
  45. Whitehead N. A., Byers J. T., Commander P. 11 other authors 2002; The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie van Leeuwenhoek 81:223–231 [CrossRef]
    [Google Scholar]
  46. Zhang R. G., Pappas T., Brace J. L. 7 other authors 2002; Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974 [CrossRef]
    [Google Scholar]
  47. Zhu J., Winans S. C. 1999; Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc Natl Acad Sci U S A 96:4832–4837 [CrossRef]
    [Google Scholar]
  48. Zhu J., Beaber J. W., More M. I., Fuqua C., Eberhard A., Winans S. C. 1998; Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens . J Bacteriol 180:5398–5405
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27954-0
Loading
/content/journal/micro/10.1099/mic.0.27954-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error