1887

Abstract

The wrinkly spreader (WS) isolate of SBW25 forms a substantial biofilm at the air–liquid interface. The biofilm is composed of an extracellular partially acetylated cellulose-fibre matrix, and previous mutagenesis of WS with mini-Tn had identified both the regulatory and cellulose-biosynthetic operons. One uncharacterized WS mutant, WS-5, still expressed cellulose but produced very weak biofilms. In this work, the mini-Tn insertion site in WS-5 has been identified as being immediately upstream of the operon. Like Tol-Pal mutants of other Gram-negative bacteria, WS-5 showed a ‘leaky-membrane’ phenotype, including the serendipitous ability to utilize sucrose, increased uptake of the hydrophilic dye propidium iodide, and the loss of lipopolysaccharide (LPS) expression. WS-5 cells were altered in relative hydrophobicity, and showed poorer recruitment and maintenance in the biofilm than WS. The WS-5 biofilm was also less sensitive to chemical interference during development. However, growth rate, cellulose expression and attachment were not significantly different between WS and WS-5. Finally, WS-5 biofilms could be partially complemented with WS-4, a biofilm- and attachment-deficient mutant that expressed LPS, resulting in a mixed biofilm with significantly increased strength. These findings show that a major component of the WS air–liquid biofilm strength results from the interactions between LPS and the cellulose matrix of the biofilm – and that in the WS biofilm, cellulose fibres, attachment factor and LPS are required for biofilm development, strength and integrity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27984-0
2005-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512829.html?itemId=/content/journal/micro/10.1099/mic.0.27984-0&mimeType=html&fmt=ahah

References

  1. Al-Tahhan R. A., Sandrin T. R., Bodour A. A., Maier R. M. 2000; Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa : effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268 [CrossRef]
    [Google Scholar]
  2. Cadieux J. E., Kuzio J., Milazzo F. H., Kropinski A. M. 1983; Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa . J Bacteriol 155:817–825
    [Google Scholar]
  3. Costerton J. W., Lewandowski Z., Cladwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745 [CrossRef]
    [Google Scholar]
  4. Dalton H. M., March P. E. 1998; Molecular genetics of bacterial attachment and biofouling. Curr Opin Biotechnol 9:252–255 [CrossRef]
    [Google Scholar]
  5. Davey M. E., O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 [CrossRef]
    [Google Scholar]
  6. De Lima Pimenta A., Di Martino P., Le Bouder E., Hulen C., Blight M. A. 2003; In vitro identification of two adherence factors required for in vivo virulence of Pseudomonas fluorescens . Microbes Infect 13:1177–1187
    [Google Scholar]
  7. Dennis J. J., Zylstra G. J. 1998; Improved antibiotic-resistance cassettes through restriction site elimination using Pfu DNA polymerase PCR. Biotechniques 25:772–776
    [Google Scholar]
  8. Donlan R. M. 2002; Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890 [CrossRef]
    [Google Scholar]
  9. Dunne W. M. 2002; Bacterial adhesion: seen any good biofilms lately?. Clin Microbiol Rev 15:155–166 [CrossRef]
    [Google Scholar]
  10. Gaspar J. A., Thomas J. A., Marolda C. L., Valvano M. A. 2000; Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38:262–275 [CrossRef]
    [Google Scholar]
  11. Genevaux P., Bauda P., DuBow M. S., Oudega B. 1999; Identification of Tn10 insertions in the rfaG, rfaP , and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol 172:1–8 [CrossRef]
    [Google Scholar]
  12. Ghigo J.-M. 2003; Are there biofilm-specific physiological pathways beyond a reasonable doubt?. Res Microbiol 154:1–8 [CrossRef]
    [Google Scholar]
  13. Giwercman B., Fomsgaard A., Mansa B., Hoiby N. 1992; Polyacrylamide gel electrophoresis analysis of lipopolysaccharide from Pseudomonas aeruginosa growing planktonically and as biofilm. FEMS Microbiol Immunol 4:225–229
    [Google Scholar]
  14. Götz F. 2002; Staphylococcus and biofilms. Mol Microbiol 43:1367–1378 [CrossRef]
    [Google Scholar]
  15. Goymer P. J. 2002 The role of the WspR response regulator in the adaptive evolution of experimental populations of Pseudomonas fluorescens SBW25 DPhil thesis University of Oxford;
    [Google Scholar]
  16. Groisman E. A., Kayser J., Soncini F. C. 1997; Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179:7040–7045
    [Google Scholar]
  17. Hall-Stoodley L., Stoodley P. 2002; Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233 [CrossRef]
    [Google Scholar]
  18. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: survival and propagation on surfaces from the environment to infectious diseases. Nat Rev Microbiol 2:95–108 [CrossRef]
    [Google Scholar]
  19. Ishiguro E. E., Vanderwel D., Kusser W. 1986; Control of lipopolysaccharide biosynthesis and release by Escherichia coli and Salmonella typhimurium . J Bacteriol 168:328–333
    [Google Scholar]
  20. Kai A., Mondal I. H. 1997; Influence of substituent of direct dye having bisphenylenebis(azo) skeletal structure on structure of nascent cellulose produced by Acetobacter xylinum [I]: different influence of Direct Red 28, Blue 1 and 15 on nascent structure. Int J Biol Macromol 20:221–231 [CrossRef]
    [Google Scholar]
  21. King E. O., Ward M. K., Raney D. C. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307
    [Google Scholar]
  22. Landini P., Zehnder A. J. 2002; The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagella genes and lipopolysaccharide production. J Bacteriol 184:1522–1529 [CrossRef]
    [Google Scholar]
  23. Lappin-Scott H. M., Bass C. 2001; Biofilm formation: attachment, growth and detachment of microbes from surfaces. Am J Infect Control 29:250–261 [CrossRef]
    [Google Scholar]
  24. Lazzaroni J. C., Germon P., Ray M. C., Vianney A. 1999; The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett 177:191–197 [CrossRef]
    [Google Scholar]
  25. Llamas M. A., Bitter W., Tommassen J., Ramos J. L, Rodríguez-Herva J. J., Hancock R. E. W. 2003; Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 185:4707–4716 [CrossRef]
    [Google Scholar]
  26. Lloubes R., Cascales E., Walburger A., Bouveret E., Lazdunski C., Bernadac A., Journet L. 2001; The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?. Res Microbiol 152:523–529 [CrossRef]
    [Google Scholar]
  27. Meyer U., Dewey F. M. 2000; Efficacy of different immunogens for raising monoclonal antibodies to Botrytis cinerea . Mycol Res 104:979–987 [CrossRef]
    [Google Scholar]
  28. Mireles J. R., Toguchi A., Harshey R. M. 2001; Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854 [CrossRef]
    [Google Scholar]
  29. Morris C. E., Monier J.-M. 2003; The ecological signifcance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453 [CrossRef]
    [Google Scholar]
  30. Nesper J., Lauriano C. M., Klose K. E., Kapfhammer D., Kraiss A., Reidl J. 2001; Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69:435–445 [CrossRef]
    [Google Scholar]
  31. Okamura-Ikeda K., Ohmura Y., Fujiwara K., Motokawa Y. 1993; Cloning and nucleotide sequence of the gcv operon encoding the Escherichia coli glycine-cleavage system. Eur J Biochem 216:539–548 [CrossRef]
    [Google Scholar]
  32. Rainey P. B. 1999; Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257 [CrossRef]
    [Google Scholar]
  33. Rainey P. B., Bailey M. J. 1996; Physical map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19:521–533 [CrossRef]
    [Google Scholar]
  34. Rainey P. B., Travisano M. 1998; Adaptive radiation in a heterogeneous environment. Nature 394:69–72 [CrossRef]
    [Google Scholar]
  35. Rainey P. B., Rainey K. 2003; Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:72–74 [CrossRef]
    [Google Scholar]
  36. Rashid M. H., Rajanna C., Ali A., Karaolis D. K. 2003; Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae . FEMS Microbiol Lett 227:113–119 [CrossRef]
    [Google Scholar]
  37. Reuhs B. L., Geller D. P., Kim J. S., Fox J. E., Kolli V. S. K., Pueppke S. G. 1998; Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol 64:4930–4938
    [Google Scholar]
  38. Rocchetta H. L., Burrows L. L., Lam J. S. 1999; Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa . Microbiol Mol Biol Rev 63:523–553
    [Google Scholar]
  39. Römling U., Rohde M. 1999; Flagella modulate the multicellular behaviour of Salmonella typhimurium on the community level. FEMS Microbiol Lett 180:91–102 [CrossRef]
    [Google Scholar]
  40. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilisation system for in vivo genetic engineering: random and site-specific transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  41. Solano C., Garcia B., Valle J., Berasain C., Ghigo J.-M., Gamazo C., Lasa I. 2002; Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808 [CrossRef]
    [Google Scholar]
  42. Spiers A. J., Kahn S. G., Travisano M., Bohannon J., Rainey P. B. 2002; Adaptive divergence in experimental populations of Pseudomonas fluorescens . 1. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161:33–46
    [Google Scholar]
  43. Spiers A. J., Bohannon J., Gehrig S., Rainey P. B. 2003; Colonisation of the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50:15–27 [CrossRef]
    [Google Scholar]
  44. Stoodley P., Sauer K., Davies D. G., Costerton J. W. 2002; Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209 [CrossRef]
    [Google Scholar]
  45. Sturgis J. N. 2001; Organisation and evolution of the tol-pal gene cluster. J Mol Microbiol Biotechnol 3:113–122
    [Google Scholar]
  46. Sutherland I. W. 2001a; The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227 [CrossRef]
    [Google Scholar]
  47. Sutherland I. W. 2001b; Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9
    [Google Scholar]
  48. Van der Mei H. C., Busscher H. J. 2001; Electrophoretic mobility distributions of single-strain microbial populations. Appl Environ Microbiol 67:491–494 [CrossRef]
    [Google Scholar]
  49. White A. P., Gibson D. L., Collinson S. K., Banser P. A., Kay W. W. 2003; Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis . J Bacteriol 185:5398–5407 [CrossRef]
    [Google Scholar]
  50. Wilson M. 2001; Bacterial biofilms and human disease. Sci Prog 84:235–254 [CrossRef]
    [Google Scholar]
  51. Wimpenny J., Manz W., Szewzyk U. 2000; Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671 [CrossRef]
    [Google Scholar]
  52. Zogaj X., Nimtz M., Rohde M., Bokranz W., Römling U. 2001; The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27984-0
Loading
/content/journal/micro/10.1099/mic.0.27984-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error