1887

Abstract

has microsatellite repeat tracts in 5′ coding regions or promoters of several genes that are important for commensal and virulence behaviour. Changes in repeat number lead to switches in expression of these genes, a process referred to as phase variation. Hence, the virulence behaviour of this organism may be influenced by factors that alter the frequency of mutations in these repeat tracts. In , induction of the SOS response destabilizes dinucleotide repeat tracts. encodes a homologue of the SOS repressor, LexA. The genome sequence was screened for the presence of the minimal consensus LexA-binding sequence from , CTG(N)CAG, in order to identify genes with the potential to be SOS regulated. Twenty-five genes were identified that had LexA-binding sequences within 200 bp of the start codon. An non-inducible LexA mutant ( ) was generated by site-directed mutagenesis. This mutant showed increased sensitivity, compared with wild-type (WT) cells, to both UV irradiation and mitomycin C (mitC) treatment. Semi-quantitative RT-PCR studies confirmed that mounts a LexA-regulated SOS response following DNA assault. Transcript levels of , , , , and were increased in WT cells following DNA damage but not in cells. Induction of the SOS response by UV irradiation or mitC treatment did not lead to any observable SOS-dependent changes in phase variation rates at either dinucleotide or tetranucleotide repeat tracts. Treatment with mitC caused a small increase in phase variation rates in both repeat tracts, independently of an SOS response. We suggest that the difference between and with regard to the effect of the SOS response on dinucleotide phase variation rates is due to the absence of any of the known -lesion synthesis DNA polymerases in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27996-0
2005-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512751.html?itemId=/content/journal/micro/10.1099/mic.0.27996-0&mimeType=html&fmt=ahah

References

  1. Bayliss C. D., van de Ven T., Moxon E. R. 2002; Mutations in polI but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats. EMBO J 21:1465–1476 [CrossRef]
    [Google Scholar]
  2. Bayliss C. D., Sweetman W. A., Moxon E. R. 2004; Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tracts but not dinucleotide repeat-driven pilin phase variation rates. J Bacteriol 186:2928–2935 [CrossRef]
    [Google Scholar]
  3. Bayliss C. D., Sweetman W. A., Moxon E. R. 2005; Destabilization of tetranucleotide repeats in Haemophilus influenzae mutants lacking RnaseHI or the Klenow domain of PolI. Nucleic Acids Res 33:400–408 [CrossRef]
    [Google Scholar]
  4. Courcelle J., Khodursky A., Peter B., Brown P. O., Hanawalt P. C. 2001; Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli . Genetics 158:41–64
    [Google Scholar]
  5. Danner D. B., Pifer M. L. 1982; Plasmid cloning vectors resistant to ampicillin and tetracycline which can replicate in both E. coli and Haemophilus cells. Gene 18:101–105 [CrossRef]
    [Google Scholar]
  6. Dawid S., Barenkamp S. J., St Geme J. W. III 1999; Variation in expression of the Haemophilus influenzae HMW adhesions: a prokaryotic system reminiscent of eukaryotes. Proc Natl Acad Sci U S A 96:1077–1082 [CrossRef]
    [Google Scholar]
  7. De Bolle X., Bayliss C. D., Field D., van de Ven T., Saunders N. J., Hood D. W., Moxon E. R. 2000; The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35:211–222 [CrossRef]
    [Google Scholar]
  8. Drake J. W. 1991; A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164 [CrossRef]
    [Google Scholar]
  9. Erill I., Escribano M., Campoy S., Barbé J. 2003; In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon. Bioinformatics 19:2225–2236 [CrossRef]
    [Google Scholar]
  10. Fernández de Henestrosa A. R., Ogi T., Aoyagi S., Chafin D., Hayes J. J., Ohmori H., Woodgate R. 2000; Identification of additional genes belonging to the LexA regulon in Escherichia coli . Mol Microbiol 35:1560–1572
    [Google Scholar]
  11. Fleischmann R. D., Adams M. D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  12. Glazebrook J. A., Grewal K. K., Strike P. 1986; Molecular analysis of the UV protection and mutation genes carried by the I incompatibility group plasmid TP110. J Bacteriol 168:251–256
    [Google Scholar]
  13. Herriott R. M., Meyer E. M., Vogt M. 1970; Defined nongrowth media for stage II development of competence in Haemophilus influenzae . J Bacteriol 101:517–524
    [Google Scholar]
  14. Hood D. W., Deadman M. E., Jennings M. P., Bisercic M., Fleischmann R. D., Venter J. C., Moxon E. R. 1996; DNA repeats identify novel virulence genes in Haemophilus influenzae . Proc Natl Acad Sci U S A 93:11121–11125 [CrossRef]
    [Google Scholar]
  15. Khil P. P., Camerini-Otero R. D. 2002; Over 1000 genes are involved in the DNA damage response of Escherichia coli . Mol Microbiol 44:89–105 [CrossRef]
    [Google Scholar]
  16. Kokoska R. J., Stefanovic L., Tran H. T., Resnick M. A., Gordenin D. A., Petes T. D. 1998; Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing ( rad27 ) and DNA polymerase δ ( pol3-t . Mol Cell Biol 18:2779–2788
    [Google Scholar]
  17. Lin L. L., Little J. W. 1988; Isolation and characterisation of noncleavable (Ind) mutants of the LexA repressor of Escherichia coli K-12. J Bacteriol 170:2163–2173
    [Google Scholar]
  18. Little J. W. 1993; LexA cleavage and other self-processing reactions. J Bacteriol 175:4943–4950
    [Google Scholar]
  19. Little J. W., Mount D. W. 1982; The SOS regulatory system of Escherichia coli . Cell 29:11–22 [CrossRef]
    [Google Scholar]
  20. Lusetti S. L., Drees J. C., Stohl E. A., Seifert H. S., Cox M. M. 2004; The DinI and RecX proteins are competing modulators of RecA function. J Biol Chem 279:55073–55079 [CrossRef]
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Morel P., Reverdy C., Michel B., Ehrlich S. D., Cassuto E. 1998; The role of SOS and flap processing in microsatellite instability in Escherichia coli . Proc Natl Acad Sci U S A 95:10003–10008 [CrossRef]
    [Google Scholar]
  23. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33 [CrossRef]
    [Google Scholar]
  24. Napolitano R., Janel-Bintz R., Wagner J., Fuchs R. P. P. 2000; All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19:6259–6265 [CrossRef]
    [Google Scholar]
  25. Neher S. B., Sauer R. T., Baker T. A. 2003; Distinct peptide signals in the UmuD and UmuD′ subunits of UmuD/D′ mediate tethering and substrate processing by the ClpXP protease. Proc Natl Acad Sci U S A 100:13219–13224 [CrossRef]
    [Google Scholar]
  26. Notani N. K., Setlow J. K. 1980; Inducible repair system in Haemophilus influenzae unaccompanied by mutation. J Bacteriol 143:516–519
    [Google Scholar]
  27. Pagès V., Koffel-Schwartz N., Fuchs R. P. P. 2003; recX , a new SOS gene that is co-transcribed with the recA gene in Escherichia coli . DNA Repair 2:273–284 [CrossRef]
    [Google Scholar]
  28. Sassanfar J., Roberts J. W. 1990; Nature of the SOS-inducing signal in Escherichia coli . The involvement of DNA replication. J Mol Biol 212:79–96 [CrossRef]
    [Google Scholar]
  29. Stohl E. A., Brockman J. P., Burkle K. L., Morimatsu K., Kowalczykowski S. C., Seifert H. S. 2003; Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo . J Biol Chem 278:2278–2285 [CrossRef]
    [Google Scholar]
  30. Strike P., Lodwick D. 1987; Plasmid genes affecting DNA repair and mutation. J Cell Sci 6:303–321
    [Google Scholar]
  31. Sutton M. D., Guzzo A., Narumi I., Costanzo M., Altenbach C., Ferentz A. E., Hubbell W. L., Walker G. C. 2002; A model for the structure of the Escherichia coli SOS-regulated UmuD2 protein. DNA Repair 1:77–93 [CrossRef]
    [Google Scholar]
  32. Tippin B., Pham P., Goodman M. F. 2004; Error-prone replication for better or worse. Trends Microbiol 12:288–295 [CrossRef]
    [Google Scholar]
  33. van Ham S. M., van Alphen L., Mooi F. R., van Putten J. P. M. 1993; Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 73:1187–1196 [CrossRef]
    [Google Scholar]
  34. Venkatesh R., Ganesh N., Guhan N., Sreedhar Reddy M., Chandrasekhar T., Muniyappa K. 2002; RecX protein abrogates ATP hydrolysis and strand exchange promoted by RecA: insights into negative regulation of homologous recombination. Proc Natl Acad Sci U S A 99:12091–12096 [CrossRef]
    [Google Scholar]
  35. Wagner J., Etienne H., Janel-Bintz R., Fuchs R. P. P. 2002; Genetics of mutagenesis in E. coli : various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity. DNA Repair 1:159–167 [CrossRef]
    [Google Scholar]
  36. Walker G. C. 1984; Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli . Microbiol Rev 48:60–93
    [Google Scholar]
  37. Zulty J. J., Barcak G. J. 1993; Structural organization, nucleotide sequence, and regulation of the Haemophilus influenzae rec-1 + gene. J Bacteriol 175:7269–7281
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27996-0
Loading
/content/journal/micro/10.1099/mic.0.27996-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error