1887

Abstract

Previous proteomic analyses of by two-dimensional electrophoresis and protein mass fingerprinting focused on extracts from total cellular material. Here, the membrane-associated proteome of cultures grown in a liquid minimal medium was partially characterized. The products of some 120 genes were characterized from the membrane fraction, with 70 predicted to possess at least one transmembrane helix. A notably high proportion of ABC transporter systems was represented; the specific types detected provided a snapshot of the nutritional requirements of the mycelium. The membrane-associated proteins did not change very much in abundance in different phases of growth in liquid minimal medium. Identification of gene products not expected to be present in membrane protein extracts led to a reconsideration of the genome annotation in two cases, and supplemented scarce information on 11 hypothetical/conserved hypothetical proteins of unknown function. The wild-type membrane proteome was compared with that of a mutant lacking the only tRNA capable of efficient translation of the rare UUA (leucine) codon. Such mutants are unaffected in vegetative growth but are defective in many aspects of secondary metabolism and morphological differentiation. There were a few clear changes in the membrane proteome of the mutant. In particular, two hypothetical proteins (SCO4244 and SCO4252) were completely absent from the mutant, and this was associated with the TTA-containing regulatory gene . Evidence for the control of a cluster of function-unknown genes by the regulator revealed a new aspect of the pleiotropic phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28000-0
2005-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512707.html?itemId=/content/journal/micro/10.1099/mic.0.28000-0&mimeType=html&fmt=ahah

References

  1. Bentley S. D., Chater K. F., Cerdeno-Tarraga A.-M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2. Nature 417:141–147 [CrossRef]
    [Google Scholar]
  2. Bertram R., Schlicht M., Mahr K., Nothaft H., Saier M. H., Titgemeyer F. 2004; In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2. J Bacteriol 186:1362–1373 [CrossRef]
    [Google Scholar]
  3. Boos W., Shuman H. 1998; Maltose/maltodextrin system of Escherichia coli : transport, metabolism and regulation. Microbiol Mol Biol Rev 62:204–229
    [Google Scholar]
  4. Campelo A. B., Gil J. A. 2002; The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148:51–59
    [Google Scholar]
  5. Carmody M., Byrne B., Murphy B., Breen C., Lynch S., Flood E., Finnan S., Caffrey P. 2004; Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107–115 [CrossRef]
    [Google Scholar]
  6. Challis G. L., Hopwood D. A. 2003; Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100:S14555–S14561 [CrossRef]
    [Google Scholar]
  7. Chevallet M., Santoni V., Poinas A. 7 other authors 1998; New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19:1901–1909 [CrossRef]
    [Google Scholar]
  8. De Schrijver A., De Mot R. 1999; A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiology 145:1287–1288 [CrossRef]
    [Google Scholar]
  9. Hesketh A. R., Chandra G., Shaw A. D., Rowland J. J., Kell D. B., Bibb M. J., Chater K. F. 2002; Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor . Mol Microbiol 46:917–932 [CrossRef]
    [Google Scholar]
  10. Janssen G. R., Ward J. M., Bibb M. J. 1989; Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene ( aph ) from Streptomyces fradiae . Genes Dev 3:415–429 [CrossRef]
    [Google Scholar]
  11. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  12. Kim D. W., Chater K. F., Lee K. J., Hesketh A. R. 2005; Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor . J Bacteriol 187:2957–2966 [CrossRef]
    [Google Scholar]
  13. Luche S., Santoni V., Rabilloud T. 2003; Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3:249–253 [CrossRef]
    [Google Scholar]
  14. Molloy M. P., Herbert B. R., Slade M. B., Rabilloud T., Nouwens A. S., Williams K. L., Gooley A. A. 2000; Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 267:2871–2881 [CrossRef]
    [Google Scholar]
  15. Murray M. G. 1986; Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Anal Biochem 158:165–170 [CrossRef]
    [Google Scholar]
  16. Neuhoff V., Arold N., Taube D., Ehrhardt W. 1988; Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262 [CrossRef]
    [Google Scholar]
  17. Nouwens A. S., Cordwell S. J., Larsen M. R., Molloy M. P., Gillings M., Willcox M. D., Walsh B. J. 2000; Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis 21:3797–3809 [CrossRef]
    [Google Scholar]
  18. Rascher A., Hu Z., Viswanathan N., Schirmer A., Reid R., Nierman W. C., Lewis M., Hutchinson C. R. 2003; Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218:223–230 [CrossRef]
    [Google Scholar]
  19. Redenbach M., Kieser H. M., Danapiete D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  20. Saito N., Matsubara K., Watanabe M., Kato F., Ochi K. 2003; Genetic and biochemical characterization of EshA, a protein that forms large multimers and affects developmental processes in Streptomyces griseus . J Biol Chem 278:5902–5911 [CrossRef]
    [Google Scholar]
  21. Santoni V., Molloy M., Rabilloud T. 2000; Membrane proteins and proteomics: un amour impossible?. Electrophoresis 21:1054–1070 [CrossRef]
    [Google Scholar]
  22. Sekurova O. N., Brautaset T., Sletta H., Borgos S. E., Jakobsen O. M., Ellingsen T. E., Strom A. R., Valla S., Zotchev S. B. 2004; In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354 [CrossRef]
    [Google Scholar]
  23. Strauch E., Takano E., Bayliss H. A., Bibb M. J. 1991; The stringent response in Streptomyces coelicolor A3(2. Mol Microbiol 5:289–298 [CrossRef]
    [Google Scholar]
  24. Weaver D., Karoonuthaisiri N., Tsai H. H. & 9 other authors 2004; Genome plasticity in Streptomyces : identification of 1 Mb TIRs in the S. coelicolor A3(2) chromosome. Mol Microbiol 51:1535–1550 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28000-0
Loading
/content/journal/micro/10.1099/mic.0.28000-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error