1887

Abstract

A gene, , encoding a protein similar to the response regulators of bacterial two-component signal transduction systems, was identified upstream of the polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in CCM 3239. Expression of the gene was directed by a single promoter, , which was transcribed at low levels during the exponential phase and induced just before the stationary phase. A divergently transcribed gene, , has been identified upstream of , encoding a protein homologous to transcriptional repressors of the TetR family. The gene was disrupted in the CCM 3239 chromosome by homologous recombination. The mutation in the gene had no effect on growth and differentiation. However, biochromatographic analysis of culture extracts from the -disrupted strain revealed that auricin was not produced in the mutant. This indicated that is essential for auricin production. Transcription from the previously characterized promoter, directing expression of the first gene, , in the auricin gene cluster, was dramatically decreased in the CCM 3239 mutant strain. Moreover, the Aur1P protein, overproduced in , was shown to bind specifically upstream of the promoter region. The results indicated that the Aur1P regulator activates expression of the auricin biosynthesis genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28019-0
2005-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512693.html?itemId=/content/journal/micro/10.1099/mic.0.28019-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. O., Seidman J. S., Smith J. A., Struhl K. 1995 Current Protocols in Molecular Biology NY: Wiley;
    [Google Scholar]
  2. Bate N., Butler A. R., Gandecha A. R., Cundliffe E. 1999; Multiple regulatory genes in the tylosin-biosynthetic cluster of Streptomyces fradiae . Chem Biol 6:617–624 [CrossRef]
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Brian P., Riggle P., Santos R. A., Champness W. C. 1996; Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA -encoded putative signal transduction system. J Bacteriol 178:3221–3231
    [Google Scholar]
  5. Brown K. L., Wood S., Buttner M. J. 1992; Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2) – renaturation of a sigma subunit using GroEL. Mol Microbiol 6:1133–1139 [CrossRef]
    [Google Scholar]
  6. Buttner M. J., Lewis C. G. 1992; Construction and characterization of Streptomyces coelicolor A3(2) mutants that are multiply deficient in the nonessential hrd -encoded RNA polymerase sigma factors. J Bacteriol 174:5165–5167
    [Google Scholar]
  7. Chang H. M., Chen M. Y., Shien Y. T., Bibb M. J., Chen C. W. 1996; The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 21:1075–1085
    [Google Scholar]
  8. Chater K. F. 1998; Taking a genetic scalpel to the Streptomyces colony. Microbiology 144:1465–1478 [CrossRef]
    [Google Scholar]
  9. Chater K. F., Bibb M. J. 1997; Regulation of bacterial antibiotic production. In Biotechnology , 2nd edn pp 59–105 Edited by Kleinkauf H., von Dohren H. Weinheim: VCH;
    [Google Scholar]
  10. Furuya K., Hutchinson C. R. 1996; The DnrN protein of Streptomyces peucetius , a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J Bacteriol 178:6310–6318
    [Google Scholar]
  11. Gramajo H. C., Takano E., Bibb M. J. 1993; Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845 [CrossRef]
    [Google Scholar]
  12. Guthrie E. P., Flaxman C. S., White J., Hodgson D. A., Bibb M. J., Chater K. F. 1998; A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology 144:727–738 [CrossRef]
    [Google Scholar]
  13. Horinouchi S., Hara O., Beppu T. 1983; Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans . J Bacteriol 155:1238–1248
    [Google Scholar]
  14. Hutchings M. I., Hoskisson P. A., Chandra G., Buttner M. J. 2004; Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2. Microbiology 150:2795–2806 [CrossRef]
    [Google Scholar]
  15. Ichinose K., Ozawa M., Itou K., Kunieda K., Ebizuka Y. 2003; Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp/AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiology 149:1633–1645 [CrossRef]
    [Google Scholar]
  16. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  17. Kormanec J. 2001; Analyzing the developmental expression of sigma factors with S1-nuclease mapping. . In Nuclease Methods and Protocols. Methods in Molecular Biology , vol. 160 pp 481–494 Edited by Chein C. H. Totowa, NJ: Humana Press;
    [Google Scholar]
  18. Kormanec J., Farkasovsky M. 1993; Differential expression of principal sigma factor homologues of Streptomyces aureofaciens correlates with developmental stage. Nucleic Acids Res 21:3647–3652 [CrossRef]
    [Google Scholar]
  19. Kormanec J., Farkasovsky M., Potuckova L. 1992; Four genes in Streptomyces aureofaciens containing domain characteristic of principal sigma factors. Gene 122:63–70 [CrossRef]
    [Google Scholar]
  20. Kormanec J., Rezuchova B., Farkasovsky M. 1993; Optimization of Streptomyces aureofaciens transformation and disruption of the hrdA gene encoding a homologue of the principal σ factor. J Gen Microbiol 139:2525–2529 [CrossRef]
    [Google Scholar]
  21. Kormanec J., Sevcikova B., Sprusansky O., Benada O., Kofronova O., Novakova R., Rezuchova B., Potuckova L., Homerova D. 1998; The Streptomyces aureofaciens homologue of the whiB gene is essential for sporulation and its expression correlates with the developmental stage. Folia Microbiol 43:605–612 [CrossRef]
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of Bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  23. Lombo F., Brana A. F., Salas J. A., Mendez C. 2004; Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chem Bio Chem 5:1181–1187 [CrossRef]
    [Google Scholar]
  24. Martinez-Hackert E., Stock A. M. 1997; Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269:301–312 [CrossRef]
    [Google Scholar]
  25. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65:449–560
    [Google Scholar]
  26. Metsa-Ketela M., Ylihonko K., Mantsala P. 2004; Partial activation of a silent angucycline-type gene cluster from a rubromycin b producing Streptomyces sp. PGA64. J Antibiot 57:502–510 [CrossRef]
    [Google Scholar]
  27. Novakova R., Bistakova J., Homerova D., Rezuchova B., Kormanec J. 2002; Cloning and characterization of a polyketide synthase gene cluster involved in biosynthesis of a proposed angucycline-like polyketide auricin in Streptomyces aureofaciens CCM 3239. Gene 297:197–208 [CrossRef]
    [Google Scholar]
  28. Novakova R., Sevcikova B., Kormanec J. 1998; A method for the identification of promoters recognized by RNA polymerase containing a particular sigma factor: cloning of a developmentally regulated promoter and corresponding gene directed by the Streptomyces aureofaciens sigma factor RpoZ. Gene 208:45–50
    [Google Scholar]
  29. Pang X., Aigle B., Girardet J.-M., Mangenot S., Pernodet J.-L., Decaris B., Leblond P. 2004; Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. Antimicrob Agents Chemother 48:575–588 [CrossRef]
    [Google Scholar]
  30. Park S. F., Stirling D. A., Hulton C. S. J., Booth I. R., Higgins C. F., Stewart G. S. A. B. 1989; A novel, non-invasive promoter probe vector: cloning of the osmoregulated proU promoter of Escherichia coli K12. Mol Microbiol 3:1011–1023 [CrossRef]
    [Google Scholar]
  31. Raibaud A., Zalacain M., Holt T. G., Tizard R., Thompson C. J. 1991; Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thiolesterase, transport and regulatory genes encoded by the biolaphos biosynthetic gene cluster of Streptomyces hygroscopicus . J Bacteriol 173:4454–4463
    [Google Scholar]
  32. Rebets Y., Ostash B., Luhetskyy A., Hoffmeister D., Brana A., Mendez C., Salas J. A., Bechthold A., Fedorenko V. 2003; Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 222:149–153 [CrossRef]
    [Google Scholar]
  33. Rebets Y., Ostash B., Luhetskyy A., Kushnir S., Fukuhara M., Bechthold A., Nashimoto M., Nakamura T., Fedorenko V. 2005; DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus (1912. Microbiology 151:281–290 [CrossRef]
    [Google Scholar]
  34. Smokvina T., Mazodier P., Boccard F., Thompson C. J., Guerineau M. 1990; Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94:53–59 [CrossRef]
    [Google Scholar]
  35. Stock A. M., Robinson V. L., Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215 [CrossRef]
    [Google Scholar]
  36. Stratigopoulos G., Bate N., Cundliffe E. 2004; Positive control of tylosin biosynthesis: pivotal role of TylR. Mol Microbiol 54:1326–1334 [CrossRef]
    [Google Scholar]
  37. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2. Mol Microbiol 6:2797–2804 [CrossRef]
    [Google Scholar]
  38. Trefzer A., Pelzer S., Shimana J., Stockert S., Bihlmaier C., Fiedler H-P., Welzel K., Vente A., Bechthold A. 2002; Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob Agents Chemother 46:1174–1182 [CrossRef]
    [Google Scholar]
  39. Wietzorreck A., Bibb M. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appear to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184 [CrossRef]
    [Google Scholar]
  40. Yang K., Han L., Vining L. C. 1995; Regulation of Jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2 . J Bacteriol 177:6111–6117
    [Google Scholar]
  41. Yang K., Han L., He J., Wang L., Vining L. C. 2001; A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene 279:165–173 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28019-0
Loading
/content/journal/micro/10.1099/mic.0.28019-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error