1887

Abstract

All known chlamydiae are either proven human or animal pathogens or possess such potential. Due to increasing reports of chlamydiae diversity in the environment, it is important to develop reliable means for identifying and characterizing Chlamydiales species. The identification of environmental chlamydiae at present relies on their branching pattern in 16S rRNA trees, as well as 16S/23S consensus motifs which display variability. At present, no reliable molecular signatures are known which are unique to all Chlamydiales species. Besides the rRNAs, sequence information for different Chlamydiales is not available for any other gene sequence. In this report, a number of molecular signatures are described that consist of conserved inserts and deletions (indels), in widely distributed proteins [RNA polymerase subunit (RpoA), elongation factor (EF)-Tu, EF-P, DNA gyrase B subunit (GyrB) and lysyl-tRNA synthetase (LysRS)], that are distinctive characteristics of all available chlamydiae homologues (from species and sp. UWE25) and not found in any other bacteria. Using PCR primers for highly conserved regions in these proteins, the corresponding fragments of these genes from , , and in a number of cases for , covering all families within the phylum Chlamydiae, have been cloned and sequenced. The shared presence of the identified signatures in these species provides strong evidence that these molecular signatures are distinctive characteristics of the entire order Chlamydiales and can be used to reliably determine the presence of chlamydiae or chlamydia-related organisms in environmental samples. The sequence information for these protein fragments was also used to determine the interrelationships among chlamydiae species. In a phylogenetic tree based on a combined dataset of sequences from RpoA, EF-Tu, EF-P and GyrB, the environmental chlamydiae (i.e. , and ) and the traditional (i.e. and ) formed two distinct clades. Similar relationships were also observed in individual protein phylogenies, as well as in a 16S rRNA tree for the same species. These results provide evidence that the divergence between the traditional species and the other chlamydiae families occurred very early in the evolution of this group of bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28057-0
2005-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512647.html?itemId=/content/journal/micro/10.1099/mic.0.28057-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein databases search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Amann R., Springer N., Schonhuber W., Ludwig W., Schmid E. N., Muller K. D., Michel R. 1997; Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63:115–121
    [Google Scholar]
  3. Baldauf S. L. 2003; Phylogeny for the faint of heart: a tutorial. Trends Genet 19:345–351 [CrossRef]
    [Google Scholar]
  4. Birtles R. J., Rowbotham T. J., Storey C., Marrie T. J., Raoult D. 1997; Chlamydia-like obligate parasite of free-living amoebae. Lancet 349:925–926 [CrossRef]
    [Google Scholar]
  5. Bush R. M., Everett K. D. 2001; Molecular evolution of the Chlamydiaceae . Int J Syst Evol Microbiol 51:203–220
    [Google Scholar]
  6. Collingro A., Poppert S., Heinz E., Schmitz-Esser S., Essig A., Schweikert M., Wagner M., Horn M. 2005; Recovery of an environmental chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. Microbiology 151:301–309 [CrossRef]
    [Google Scholar]
  7. Corsaro D., Venditti D. 2004; Emerging chlamydial infections. Crit Rev Microbiol 30:75–106 [CrossRef]
    [Google Scholar]
  8. Corsaro D., Venditti D., Valassina M. 2002; New chlamydial lineages from freshwater samples. Microbiology 148:343–344
    [Google Scholar]
  9. Corsaro D., Valassina M., Venditti D. 2003; Increasing diversity within Chlamydiae. Crit Rev Microbiol 29:37–78 [CrossRef]
    [Google Scholar]
  10. Draghi A., Popov V. L., Kahl M. M., Stanton J. B., Brown C. C., Tsongalis G. J., West A. B., Frasca S Jr. 2004; Characterization of “ Candidatus piscichlamydia salmonis” (order Chlamydiales ), a chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon ( Salmo salar ). J Clin Microbiol 42:5286–5297 [CrossRef]
    [Google Scholar]
  11. Everett K. D. 2000; Chlamydia and Chlamydiales: more than meets the eye. Vet Microbiol 75:109–126 [CrossRef]
    [Google Scholar]
  12. Everett K. D., Bush R. M., Andersen A. A. 1999a; Emended description of the order Chlamydiales , proposal of Parachlamydiaceae fam.nov. and Simkaniaceae fam. nov.,each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae , including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440 [CrossRef]
    [Google Scholar]
  13. Everett K. D., Hornung L. J., Andersen A. A. 1999b; Rapid detection of the Chlamydiaceae and other families in the order Chlamydiales : three PCR tests. J Clin Microbiol 37:575–580
    [Google Scholar]
  14. Felsenstein J. 1988; Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565 [CrossRef]
    [Google Scholar]
  15. Fields P. I., Barnes R. C. 1992; The genus Chlamydia . In the Prokaryotes pp 3691–3709 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  16. Fritsche T. R., Horn M., Wagner M., Herwig R. P., Schleifer K. H., Gautom R. K. 2000; Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl Environ Microbiol 66:2613–2619 [CrossRef]
    [Google Scholar]
  17. Greub G., Raoult D. 2002; Parachlamydiaceae: potential emerging pathogens. Emerg Infect Dis 8:625–630
    [Google Scholar]
  18. Griffiths E., Gupta R. S. 2001; The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Microbiology 147:2611–2622
    [Google Scholar]
  19. Griffiths E., Gupta R. S. 2002; Protein signatures distinctive of chlamydial species: horizontal transfer of cell wall biosynthesis genes glmU from Archaebacteria to Chlamydiae, and murA between Chlamydiae and Streptomyces . Microbiology 148:2541–2549
    [Google Scholar]
  20. Griffiths E., Gupta R. S. 2004; Distinctive protein signatures provide molecular markers and evidence for the monophyletic nature of the Deinococcus-Thermus phylum. J Bacteriol 186:3097–3107 [CrossRef]
    [Google Scholar]
  21. Gupta R. S. 1998; Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbiol Mol Biol Rev 62:1435–1491
    [Google Scholar]
  22. Gupta R. S. 2000; The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402 [CrossRef]
    [Google Scholar]
  23. Gupta R. S. 2004; The phylogeny and signature sequences characteristics of Fibrobacters, Chlorobi and Bacteroidetes . Crit Rev Microbiol 30:123–143 [CrossRef]
    [Google Scholar]
  24. Gupta R. S., Pereira M., Chandrasekera C., Johari V. 2003; Molecular signatures in protein sequences that are characteristic of Cyanobacteria and plastid homologues. Int J Syst Evol Microbiol 53:1833–1842 [CrossRef]
    [Google Scholar]
  25. Hashimoto T., Hasegawa M. 1996; Origin and early evolution of eukaryotes inferred from the amino acid sequences of translation elongation factors 1alpha/Tu and 2/G. Adv Biophysics 32:73–120 [CrossRef]
    [Google Scholar]
  26. Hatch T. 1998; Chlamydia : old ideas crushed, new mysteries bared. Science 282:638–639 [CrossRef]
    [Google Scholar]
  27. Horn M., Wagner M. 2001; Evidence for additional genus-level diversity of Chlamydiales in the environment. FEMS Microbiol Lett 204:71–74 [CrossRef]
    [Google Scholar]
  28. Horn M., Wagner M. 2004; Bacterial endosymbionts of free-living amoebae. J Eukaryot Microbiol 51:509–514 [CrossRef]
    [Google Scholar]
  29. Horn M., Wagner M., Muller K. D., Schmid E. N., Fritsche T. R., Schleifer K. H., Michel R. 2000; Neochlamydia hartmannellae gen. nov., sp. nov. ( Parachlamydiaceae ), an endoparasite of the amoeba Hartmannella vermiformis . Microbiology 146:1231–1239
    [Google Scholar]
  30. Horn M., Collingro A., Schmitz-Esser S. & 10 other authors; 2004; Illuminating the evolutionary history of chlamydiae. Science 304:728–730 [CrossRef]
    [Google Scholar]
  31. Kahane S., Everett K. D., Kimmel N., Friedman M. G. 1999; Simkania negevensis strain ZT: growth, antigenic and genome characteristics. Int J Syst Bacteriol 49:815–820 [CrossRef]
    [Google Scholar]
  32. Kahane S., Platzner N., Dvoskin B., Itzhaki A., Friedman M. G. 2004; Evidence for the presence of Simkania negevensis in drinking water and in reclaimed wastewater in Israel. Appl Environ Microbiol 70:3346–3351 [CrossRef]
    [Google Scholar]
  33. Kalayoglu M. V., Byrne G. I. 2001; Chlamydia. In the Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn, release 3.7 Edited by Dworkin M. New York: Springer; http://141.150.157.117:8080/prokPUB/chaprender/jsp/showchap.jsp?chapnum=335
    [Google Scholar]
  34. Kalman S., Mitchell W., Marathe R. 7 other authors 1999; Comparative genomes of Chlamydia pneumoniae and C. trachomatis . Nat Genet 21:385–389 [CrossRef]
    [Google Scholar]
  35. Kostanjsek R., Lapanje A., Rupnik M., Strus J., Drobne D., Avgustin G. 2004; Anaerobic bacteria in the gut of terrestrial isopod Crustacean Porcellio scaber . Folia Microbiol (Praha) 49:179–182 [CrossRef]
    [Google Scholar]
  36. Levine C., Hiasa H., Marians K. J. 1998; DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta 140029–43 [CrossRef]
    [Google Scholar]
  37. Mahony J. B., Chong S., Coombes B. K., Smieja M., Petrich A. 2000; Analytical sensitivity, reproducibility of results, and clinical performance of five PCR assays for detecting Chlamydia pneumoniae DNA in peripheral blood mononuclear cells. J Clin Microbiol 38:2622–2627
    [Google Scholar]
  38. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  39. Moreira D., Philippe H. 2000; Molecular phylogeny: pitfalls and progress. Int Microbiol 3:9–16
    [Google Scholar]
  40. Olsen G. J., Woese C. R. 1997; Archaeal genomics: an overview. Cell 89:991–994 [CrossRef]
    [Google Scholar]
  41. Ossewaarde J. M., Meijer A. 1999; Molecular evidence for the existence of additional members of the order Chlamydiales . Microbiology 145:411–417 [CrossRef]
    [Google Scholar]
  42. Read T. D., Brunham R. C., Shen C. 21 other authors 2000; Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406 [CrossRef]
    [Google Scholar]
  43. Read T. D., Myers G. S. A., Brunham R. C. 18 other authors 2003; Genome sequence of Chlamydophila caviae ( Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31:2134–2147 [CrossRef]
    [Google Scholar]
  44. Roblin P. M., Dumornay W., Hammerschlag M. R. 1992; Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae . J Clin Microbiol 30:1968–1971
    [Google Scholar]
  45. Rurangirwa F. R., Dilbeck P. M., Crawford T. B., McGuire T. C., McElwain T. F. 1999; Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales : proposal of Waddliaceae fam.nov., Waddlia chondrophila gen. nov., sp. nov.. Int J Syst Bacteriol 49:577–581 [CrossRef]
    [Google Scholar]
  46. Schachter J., Stamm W. E. 1999; Chamydia . In Manual of Clinical Microbiology pp 795–806 Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Stephens R. S., Kalman S., Lammel C. 9 other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759 [CrossRef]
    [Google Scholar]
  48. Thao M. L., Baumann L., Hess J. M., Falk B. W., Ng J. C., Gullan P. J., Baumann P. 2003; Phylogenetic evidence for two new insect-associated Chlamydia of the family Simkaniaceae . Curr Microbiol 47:46–50 [CrossRef]
    [Google Scholar]
  49. Van de P. Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  50. Woese C. R., Olsen G. J., Ibba M., Soll D. 2000; Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28057-0
Loading
/content/journal/micro/10.1099/mic.0.28057-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error