1887

Abstract

The surface layer (S-layer) protein genes of the uranium mining waste pile isolate JG-A12 and of its relative NCTC 9602 were analysed. The almost identical N-termini of the two S-layer proteins possess a unique structure, comprising three N-terminal S-layer homologous (SLH) domains. The central parts of the proteins share a high homology and are related to the S-layer proteins of CCM 2177 and P-1. In contrast, the C-terminal parts of the S-layer proteins of JG-A12 and NCTC 9602 differ significantly between each other. Surprisingly, the C-terminal part of the S-layer protein of JG-A12 shares a high identity with that of the S-layer protein of CCM 2177. In both JG-A12 and NCTC 9602 the chromosomal S-layer protein genes are followed by a newly identified putative insertion element comprising three ORFs, which encode a putative transposase, a putative integrase/recombinase and a putative protein containing a DNA binding helix–turn–helix motif, and the S-layer-protein-like gene copies (9602) or (JG-A12). Interestingly, both strains studied were found to contain an additional, plasmid-located and silent S-layer protein gene with the same sequence as and . The primary structures of the corresponding putative proteins are almost identical in both strains. The N-terminal and central parts of these S-layer proteins share a high identity with those of the chromosomally encoded functional S-layer proteins. Their C-terminal parts, however, differ significantly. These results strongly suggest that the S-layer protein genes have evolved via horizontal transfer of genetic information followed by DNA rearrangements mediated by mobile elements.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28201-0
2005-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512961.html?itemId=/content/journal/micro/10.1099/mic.0.28201-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Struhl K. 1993 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Bahl H., Scholz H., Bayan N. 27 other authors 1997; Molecular biology of S-layers. FEMS Microbiol Rev 20:47–98 [CrossRef]
    [Google Scholar]
  4. Beuzon C. R., Casadesus J. 1997; Conserved structure of IS 200 elements in Salmonella . Nucleic Acids Res 25:1355–1361 [CrossRef]
    [Google Scholar]
  5. Blaser M. J., Wang E., Tummuru M. K., Washburn R., Fujimoto S., Labigne A. 1994; High-frequency S-layer protein variation in Campylobacter fetus revealed by sapA mutagenesis. Mol Microbiol 14:453–462 [CrossRef]
    [Google Scholar]
  6. Boot H. J., Pouwels P. H. 1996; Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol Microbiol 21:1117–1123 [CrossRef]
    [Google Scholar]
  7. Boot H. J., Kolen C. P., Pot B., Kersters K., Pouwels P. H. 1996a; The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus . Microbiology 142:2375–2384 [CrossRef]
    [Google Scholar]
  8. Boot H. J., Kolen C. P., Pouwels P. H. 1996b; Interchange of the active and silent S-layer protein genes of Lactobacillus acidophilus by inversion of the chromosomal slp segment. Mol Microbiol 21:799–809 [CrossRef]
    [Google Scholar]
  9. Borst P., Greaves D. R. 1987; Programmed gene rearrangements altering gene expression. Science 235:658–667 [CrossRef]
    [Google Scholar]
  10. Bowditch R. D., Baumann P., Yousten A. A. 1989; Cloning and sequencing of the gene encoding a 125-kilodalton surface-layer protein from Bacillus sphaericus 2362 and of a related cryptic gene. J Bacteriol 171:4178–4188
    [Google Scholar]
  11. Bravo A. 1997; Phylogenetic relationships of Bacillus thuringiensis Δ-endotoxin family proteins and their functional domains. J Bacteriol 179:2793–2801
    [Google Scholar]
  12. Chan E. C. S., Rutter P. J., Wills A. 1973; Abundant growth and sporulation of Bacillus sphaericus NCA Hoop 1-A-2 in a chemically defined medium. Can J Microbiol 19:151–154 [CrossRef]
    [Google Scholar]
  13. Cozzone A. J. 1988; Protein phosphorylation in prokaryotes. Annu Rev Microbiol 42:97–125 [CrossRef]
    [Google Scholar]
  14. Deblaere R. Y., Desomer J., Dhaese P. 1995; Expression of surface layer proteins. Patent no. WO9519371-A/8, 20-JUL-1995. EMBL AC no. A45814
  15. Dworkin J., Blaser M. J. 1996; Generation of Campylobacter fetus S-layer protein diversity utilizes a single promoter on an invertible DNA segment. Mol Microbiol 19:1241–1253 [CrossRef]
    [Google Scholar]
  16. Dybvig K. 1993; DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol 10:465–471 [CrossRef]
    [Google Scholar]
  17. Egelseer E. M., Schocher I., Sára M., Sleytr U. B. 1995; The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J Bacteriol 177:1444–1451
    [Google Scholar]
  18. Egelseer E. M., Schocher I., Sleytr U. B., Sára M. 1996; Evidence that an N-terminal S-layer protein fragment triggers the release of a cell-associated high-molecular-weight amylase in Bacillus stearothermophilus ATCC 12980. J Bacteriol 178:5602–5609
    [Google Scholar]
  19. Egelseer E. M., Idris R., Jarosch M., Danhorn T., Sleytr U. B., Sára M. 2000; ISBst 12 , a novel type of insertion-sequence element causing loss of S-layer-gene expression in Bacillus stearothermophilus ATCC 12980. Microbiology 146:2175–2183
    [Google Scholar]
  20. Engelhardt H., Peters J. 1998; Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J Struct Biol 124:276–302 [CrossRef]
    [Google Scholar]
  21. Gustafson C. E., Chu S., Trust T. J. 1994; Mutagenesis of the paracrystalline surface protein array of Aeromonas salmonicida by endogenous insertion elements. J Mol Biol 237:452–463 [CrossRef]
    [Google Scholar]
  22. Hansmeier N., Bartels F. W., Ros R. D. A., Tauch A., Pühler A., Kalinowski J. 2004; Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy. J Biotechnol 112:177–193 [CrossRef]
    [Google Scholar]
  23. Hastie A. T., Brinton C. C. 1979a; Isolation, characterization, and in vitro assembly of the tetragonally arrayed layer of Bacillus sphaericus . J Bacteriol 138:999–1009
    [Google Scholar]
  24. Hastie A. T., Brinton C. C. 1979b; Specific interactions of the tetragonally arrayed protein layer of Bacillus sphaericus with its peptidoglycan sacculus. J Bacteriol 138:1010–1021
    [Google Scholar]
  25. Hynönen U., Westerlund-Wikstrom B., Palva A., Korhonen T. K. 2002; Identification by flagellum display of an epithelial cell- and fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis . J Bacteriol 184:3360–3367 [CrossRef]
    [Google Scholar]
  26. Ilk N., Kosma P., Puchberger M., Egelseer E. M., Mayer H. F., Sleytr U. B., Sára M. 1999; Structural and functional analyses of the secondary cell wall polymer of Bacillus sphaericus CCM 2177 that serves as an S-layer-specific anchor. J Bacteriol 181:7643–7646
    [Google Scholar]
  27. Ilk N., Vollenkle C., Egelseer E. M., Breitwieser A., Sleytr U. B., Sára M. 2002; Molecular characterization of the S-layer gene, sbpA , of Bacillus sphaericus CCM 2177 and production of a functional S-layer fusion protein with the ability to recrystallize in a defined orientation while presenting the fused allergen. Appl Environ Microbiol 68:3251–3260 [CrossRef]
    [Google Scholar]
  28. Ishiguro E. E., Kay W. W., Ainsworth T., Chamberlain J. B., Austen R. A., Buckley J. T., Trust T. J. 1981; Loss of virulence during culture of Aeromonas salmonicida at high temperature. J Bacteriol 148:333–340
    [Google Scholar]
  29. Jakava-Viljanen M., Avall-Jaaskelainen S., Messner P., Sleytr U. B., Palva A. 2002; Isolation of three new surface layer protein genes ( slp ) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions. J Bacteriol 184:6786–6795 [CrossRef]
    [Google Scholar]
  30. Kersulyte D., Akopyants N. S., Clifton S. W., Roe B. A., Berg D. E. 1998; Novel sequence organization and insertion specificity of IS 605 and IS 606 : chimaeric transposable elements of Helicobacter pylori . Gene 223:175–186 [CrossRef]
    [Google Scholar]
  31. Kersulyte D., Mukhopadhyay A. K., Shirai M., Nakazawa T., Berg D. E. 2000; Functional organization and insertion specificity of IS 607 , a chimeric element of Helicobacter pylori . J Bacteriol 182:5300–5308 [CrossRef]
    [Google Scholar]
  32. Kuen B., Sleytr U. B., Lubitz W. 1994; Sequence analysis of the sbsA gene encoding the 130-kDa surface-layer protein of Bacillus stearothermophilus strain PV72. Gene 145:115–120 [CrossRef]
    [Google Scholar]
  33. Kuen B., Koch A., Asenbauer E., Sára M., Lubitz W. 1997; Molecular characterization of the Bacillus stearothermophilus PV72 S-layer gene sbsB induced by oxidative stress. J Bacteriol 179:1664–1670
    [Google Scholar]
  34. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  35. Lam S., Roth J. R. 1983a; Genetic mapping of IS 200 copies in Salmonella typhimurim strain LT2. Genetics 105:801–811
    [Google Scholar]
  36. Lam S., Roth J. R. 1983b; IS 200 : a Salmonella -specific insertion sequence. Cell 34:951–960 [CrossRef]
    [Google Scholar]
  37. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  38. Lepault J., Martin N., Leonard K. 1986; Three-dimensional structure of the T-layer of Bacillus sphaericus P-1. J Bacteriol 168:303–308
    [Google Scholar]
  39. Lewis L. O., Yousten A. A., Murray R. G. 1987; Characterization of the surface protein layers of the mosquito-pathogenic strains of Bacillus sphaericus . J Bacteriol 169:72–79
    [Google Scholar]
  40. Luscombe N. M., Austin S. E., Berman H. M., Thornton J. M. 2000; An overview of the structures of protein-DNA complexes. Genome Biol 1: [View Article]
    [Google Scholar]
  41. Marchler-Bauer A., Anderson J. B., DeWeese-Scott C. 24 other authors 2003; CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387 [CrossRef]
    [Google Scholar]
  42. Matuschek M., Burchhardt G., Sahm K., Bahl H. 1994; Pullulanase of Thermoanaerobacterium thermosulfurigenes EM1 ( Clostridium thermosulfurogenes ): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J Bacteriol 176:3295–3302
    [Google Scholar]
  43. Merroun M., Raff J., Rossberg A., Hennig C., Reich T., Selenska-Pobell S. 2005; Complexation of uranium with S-layers of Bacillus sphaericus JG-A12 and NCTC 9602. Appl Environ Microbiol in press
    [Google Scholar]
  44. Mesnage S., Haustant M., Fouet A. 2001; A general strategy for identification of S-layer genes in the Bacillus cereus group: molecular characterization of such a gene in Bacillus thuringiensis subsp. galleriae NRRL 4045. Microbiology 147:1343–1351
    [Google Scholar]
  45. Mignot T., Denis B., Couture-Tosi E., Kolsto A. B., Mock M., Fouet A. 2001; Distribution of S-layers on the surface of Bacillus cereus strains: phylogenetic origin and ecological pressure. Environ Microbiol 3:493–501 [CrossRef]
    [Google Scholar]
  46. Mignot T., Mesnage S., Couture-Tosi E., Mock M., Fouet A. 2002; Developmental switch of S-layer protein synthesis in Bacillus anthracis . Mol Microbiol 43:1615–1627 [CrossRef]
    [Google Scholar]
  47. Mignot T., Mock M., Fouet A. 2003; A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis . Mol Microbiol 47:917–927 [CrossRef]
    [Google Scholar]
  48. Miteva V., Selenska-Pobell S., Mitev V. 1999; Random and repetitive primer amplified polymorphic DNA analysis of Bacillus sphaericus . J Appl Microbiol 86:928–936 [CrossRef]
    [Google Scholar]
  49. Murai N., Kamata H., Nagashima Y., Yagisawa H., Hirata H. 1995; A novel insertion sequence (IS)-like element of the thermophilic bacterium PS3 promotes expression of the alanine carrier protein-encoding gene. Gene 163:103–107 [CrossRef]
    [Google Scholar]
  50. Ohnesorge F., Heckl W. M. 7 other authors Häberle W. 1992; Scanning force microscopy studies of the S-layers from Bacillus coagulans E38-66, Bacillus sphaericus CCM 2177, and of an antibody binding process. Ultramicroscopy 42:441238–1242
    [Google Scholar]
  51. Raff J. 2002 Wechselwirkungen der Hüllproteine von Bakterien aus Uranabfallhalden mit Schwermetallen PhD thesis University of Leipzig; FZR-Report no. 358
    [Google Scholar]
  52. Raff J., Selenska-Pobell S. 2004; Posttranslational modifications of the S-layer protein from Bacillus sphaericus JG-A12 and its influence on uranium binding. FZR-Report no 400:
    [Google Scholar]
  53. Raff J., Merroun M., Rossberg A., Hennig C., Selenska-Pobell S. 2003; EXAFS study of U(VI) complexes formed by native and recrystallized S-layers of Bacillus sphaericus JG-A12 and NCTC 9602. FZR-Report no 373:
    [Google Scholar]
  54. Raff J., Merroun M., Rossberg A., Soltmann U., Selenska-Pobell S. 2004; Interactions of the U mining waste pile isolate Bacillus sphaericus JG-A12 with U. In Water–Rock Interaction pp 697–701 Edited by Wanty R. B., Seal R. R. London: Balkema Publishers;
    [Google Scholar]
  55. Sadowski P. 1986; Site-specific recombinases: changing partners and doing the twist. J Bacteriol 165:341–347
    [Google Scholar]
  56. Saier M. H. Jr, Wu L. F., Reizer J. 1990; Regulation of bacterial physiological processes by three types of protein phosphorylating systems. Trends Biochem Sci 15:391–395 [CrossRef]
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Sára M., Sleytr U. B. 1987; Molecular sieving through S layers of Bacillus stearothermophilus strains. J Bacteriol 169:4092–4098
    [Google Scholar]
  59. Sára M., Sleytr U. B. 2000; S-layer proteins. J Bacteriol 182:859–868 [CrossRef]
    [Google Scholar]
  60. Scholz H., Hummel S., Witte A., Lubitz W., Kuen B. 2000; The transposable element IS 4712 prevents S-layer gene ( sbs A) expression in Bacillus stearothermophilus and also affects the synthesis of altered surface layer proteins. Arch Microbiol 174:97–103 [CrossRef]
    [Google Scholar]
  61. Scholz H. C., Riedmann E., Witte A., Lubitz W., Kuen B. 2001; S-layer variation in Bacillus stearothermophilus PV72 is based on DNA rearrangements between the chromosome and the naturally occurring megaplasmids. J Bacteriol 183:1672–1679 [CrossRef]
    [Google Scholar]
  62. Selenska-Pobell S., Panak P., Miteva V., Boudakov I., Bernhard G., Nitsche H. 1999; Selective accumulation of heavy metals by three indigenous Bacillus strains, B. cereus , B. megaterium and B. sphaericus , from drain waters of a uranium waste pile. FEMS Microbiol Ecol 29:59–67 [CrossRef]
    [Google Scholar]
  63. Selenska-Trajkowa S., Radewa G., Markov K. 1990; Comparison between Rhizobium galegae and Rhizobium meliloti plasmid contents. Lett Appl Microbiol 10:123–126 [CrossRef]
    [Google Scholar]
  64. Sidhu M. S., Olsen I. 1997; S-layer of Bacillus species. Microbiology 143:1039–1052 [CrossRef]
    [Google Scholar]
  65. Stark W. M., Boocock M. R., Sherratt D. J. 1992; Catalysis by site-specific recombinases. Trends Genet 8:432–439 [CrossRef]
    [Google Scholar]
  66. Takami H., Han C. G., Takaki Y., Ohtsubo E. 2001; Identification and distribution of new insertion sequences in the genome of alkaliphilic Bacillus halodurans C-125. J Bacteriol 183:4345–4356 [CrossRef]
    [Google Scholar]
  67. Thomas S. R., Trust T. J. 1995; Tyrosine phosphorylation of the tetragonal paracrystalline array of Aeromonas hydrophila : molecular cloning and high-level expression of the S-layer gene. J Mol Biol 425:568–581
    [Google Scholar]
  68. Wintjens R., Rooman M. 1996; Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262:294–313 [CrossRef]
    [Google Scholar]
  69. Wood H. E., Devine K. M., McConnell D. J. 1990; Characterisation of a repressor gene ( xre ) and a temperature-sensitive allele from the Bacillus subtilis prophage, PBSX. Gene 96:83–88 [CrossRef]
    [Google Scholar]
  70. Zuker M., Mathews D. H., Turner D. H. 1999; Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology ( NATO ASI Series ) pp 11–43 Edited by Barciszewsk J., Clark B. F. C. Dordrecht: Kluwer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28201-0
Loading
/content/journal/micro/10.1099/mic.0.28201-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error