1887

Abstract

It is well established that motility is an essential virulence trait of the human gastric pathogen . Accordingly, chemotaxis contributes to the ability of to colonize animal infection models. Chemotactic signal transduction in differs from the enterobacterial paradigm in several respects. In addition to a separate CheY response regulator protein (CheY1), contains a CheY-like receiver domain (CheY2) which is C-terminally fused to the histidine kinase CheA. Furthermore, the genome of encodes three CheV proteins consisting of an N-terminal CheW-like domain and a C-terminal receiver domain, while there are no orthologues of the chemotaxis genes , and . To obtain insight into the mechanisms controlling the chemotactic response of , we investigated the phosphotransfer reactions between the purified two-component signalling modules . We demonstrate that both CheY1 and CheY2 are phosphorylated by CheA∼P and that the three CheV proteins mediate the dephosphorylation of CheA∼P, but with a clearly reduced efficiency as compared to CheY1 and CheY2. Furthermore, our data indicate retrophosphorylation of CheAY2 by CheY1∼P, suggesting a role of CheY2 as a phosphate sink to modulate the half-life of CheY1∼P.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28217-0
2005-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3299.html?itemId=/content/journal/micro/10.1099/mic.0.28217-0&mimeType=html&fmt=ahah

References

  1. Alley M. R. K., Maddock J. R., Shapiro L. 1992; Polar localization of a bacterial chemoreceptor. Genes Dev 6:825–836 [CrossRef]
    [Google Scholar]
  2. Alm R. A., Ling L.-S. L., Moir D. T. 20 other authors 1999; Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature 397:176–180 [CrossRef]
    [Google Scholar]
  3. Baar C., Eppinger M., Raddatz G. & 12 other authors; 2003; Complete genome sequence and analysis of Wolinella succinogenes . Proc Natl Acad Sci U S A 100:11690–11695 [CrossRef]
    [Google Scholar]
  4. Beier D., Frank R. 2000; Molecular characterization of two-component systems of Helicobacter pylori . J Bacteriol 182:2068–2076 [CrossRef]
    [Google Scholar]
  5. Beier D., Spohn G., Rappuoli R., Scarlato V. 1997; Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. J Bacteriol 179:4676–4683
    [Google Scholar]
  6. Blaser M. J. 1992; Helicobacter pylori : its role in disease. Clin Infect Dis 5:386–391
    [Google Scholar]
  7. Bourret R. B., Hess J. F., Simon M. I. 1990; Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl Acad Sci U S A 87:41–45 [CrossRef]
    [Google Scholar]
  8. Cerda O., Rivas A., Toledo H. 2003; Helicobacter pylori strain ATCC 700392 encodes a methyl-accepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate. FEMS Microbiol Lett 224:175–181 [CrossRef]
    [Google Scholar]
  9. Eaton K. A., Morgan R. R., Krakowka S. 1992; Motility as a factor in the colonization of gnotobiotic piglets by Helicobacter pylori . J Med Microbiol 37:123–127 [CrossRef]
    [Google Scholar]
  10. Eaton K. A., Suerbaum S., Josenhans C., Krakowka S. 1996; Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 64:2445–2448
    [Google Scholar]
  11. Foynes S., Dorrell N., Ward S. J., Stabler R. A., McColm A. A., Rycroft A. N., Wren B. W. 2000; Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun 68:2016–2023 [CrossRef]
    [Google Scholar]
  12. Fredrick K. L., Helmann J. D. 1994; Dual chemotaxis signaling pathways in Bacillus subtilis : a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 176:2727–2735
    [Google Scholar]
  13. Georgellis G., Lynch A. S., Lin E. C. C. 1997; In vitro phosphorylation study of the Arc two-component signal transduction system of Escherichia coli . J Bacteriol 179:5429–5435
    [Google Scholar]
  14. Karatan E., Saulmon M. M., Bunn M. W., Ordal G. W. 2001; Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J Biol Chem 276:43618–43626 [CrossRef]
    [Google Scholar]
  15. Levit M. N., Grebe T. W., Stock J. B. 2002; Organization of the receptor-kinase signalling array that regulates Escherichia coli chemotaxis. J Biol Chem 277:36748–36754 [CrossRef]
    [Google Scholar]
  16. Lukat G. S., Lee B. H., Mottonen J. M., Stock A. M., Stock J. B. 1991; Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem 266:8348–8354
    [Google Scholar]
  17. Lukat G. S., McCleary W. R., Stock A. M., Stock J. B. 1992; Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci U S A 89:718–722 [CrossRef]
    [Google Scholar]
  18. Maddock J. R., Shapiro L. 1993; Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723 [CrossRef]
    [Google Scholar]
  19. Martin A. C., Nair U., Armitage J. P., Maddock J. R. 2003; Polar localization of CheA2 in Rhodobacter sphaeroides requires specific Che homologs. J Bacteriol 185:4667–4671 [CrossRef]
    [Google Scholar]
  20. McCleary W. R., Stock J. B. 1994; Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269:31567–31572
    [Google Scholar]
  21. McEvoy M. M., Bren A., Eisenbach M., Dahlquist F. W. 1999; Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein FliM. J Mol Biol 289:1423–1433 [CrossRef]
    [Google Scholar]
  22. McGee D. J., Langford M. L., Watson E. L., Carter J. E., Chen Y.-T., Ottemann K. M. 2005; Colonization and inflammation deficiencies in mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect Immun 73:1820–1827 [CrossRef]
    [Google Scholar]
  23. Ottemann K. M., Lowenthal A. 2002; Helicobacter pylori uses motility for both initial colonization and to attain robust infection. Infect Immun 70:1984–1990 [CrossRef]
    [Google Scholar]
  24. Park S.-Y., Chao X., Gonzalez-Bonet G., Beel B. D., Bilwes A. M., Crane B. R. 2004; Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol Cell 16:563–574
    [Google Scholar]
  25. Parkhill J., Wren B. W., Mungall K. & 18 other authors; 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668 [CrossRef]
    [Google Scholar]
  26. Perraud A.-L., Kimmel B., Weiss V., Gross R. 1998; Specificity of the BvgAS and EvgAS phosphorelay is mediated by the C-terminal HPt domains of the sensor proteins. Mol Microbiol 27:875–887 [CrossRef]
    [Google Scholar]
  27. Peterson W. L. 1991; Helicobacter pylori and peptic ulcer disease. N Engl J Med 324:1043–1048 [CrossRef]
    [Google Scholar]
  28. Pittman M. S., Goodwin M., Kelly D. J. 2001; Chemotaxis in the human gastric pathogen Helicobacter pylori : different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology 147:2493–2504
    [Google Scholar]
  29. Schmitt R. 2002; Sinorhizobial chemotaxis: a departure from the enterobacterial paradigm. Microbiology 148:627–631
    [Google Scholar]
  30. Shimizu T. S., Le Novere N., Levin M. D., Beavil A. J., Sutton B. J., Bray D. 2000; Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nature Cell Biol 2:792–796 [CrossRef]
    [Google Scholar]
  31. Shukla D., Zhu X. Y., Matsumura P. 1998; Flagellar motor-switch binding face of Chey and the biochemical basis of suppression by CheY mutants that compensate for motor-switch defects in Escherichia coli . J Biol Chem 273:23993–23999 [CrossRef]
    [Google Scholar]
  32. Sourjik V., Berg H. C. 2000; Localization of the components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37:740–751 [CrossRef]
    [Google Scholar]
  33. Sourjik V., Schmitt R. 1996; Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti . Mol Microbiol 22:427–436 [CrossRef]
    [Google Scholar]
  34. Sourjik V., Schmitt R. 1998; Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti . Biochemistry 37:2327–2335 [CrossRef]
    [Google Scholar]
  35. Suerbaum S., Josenhans C., Sterzenbach T. & 19 other authors; 2003; The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus . Proc Natl Acad Sci U S A 100:7901–7906 [CrossRef]
    [Google Scholar]
  36. Szurmant H., Ordal G. W. 2004; Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319 [CrossRef]
    [Google Scholar]
  37. Szurmant H., Bunn M. W., Cannistraro V. J., Ordal G. W. 2003; Bacillus subtilis hydrolyzes CheY-P at the location of its action, the flagellar switch. J Biol Chem 278:48611–48616 [CrossRef]
    [Google Scholar]
  38. Szurmant H., Muff T. J., Ordal G. W. 2004; Bacillus subtilis CheC and FliY are members of a novel class of CheY∼P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279:21787–21792 [CrossRef]
    [Google Scholar]
  39. Terry K., Williams S. M., Connolly L., Ottemann K. M. 2005; Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect Immun 73:803–811 [CrossRef]
    [Google Scholar]
  40. Tomb J.-F., White O., Kerlavage A. R. & 39 other authors; 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388:539–547 [CrossRef]
    [Google Scholar]
  41. Uemura N. S., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R. J. 2001; Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789 [CrossRef]
    [Google Scholar]
  42. Wadhams G. H., Armitage J. P. 2004; Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037 [CrossRef]
    [Google Scholar]
  43. Wadhams G. H., Martin A. C., Armitage J. P. 2000; Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides . Mol Microbiol 36:1222–1233
    [Google Scholar]
  44. Worku M. L., Karim Q. N., Spencer J., Sidebotham R. L. 2004; Chemotactic response of Helicobacter pylori to human plasma and bile. J Med Microbiol 53:807–811 [CrossRef]
    [Google Scholar]
  45. Xiang Z., Censini S., Bayeli P. F., Telford J. L., Figura N., Rappuoli R., Covacci A. 1995; Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun 63:94–98
    [Google Scholar]
  46. Yoshiyama H., Nakamura H., Kimoto M., Okita K., Nakazawa T. 1999; Chemotaxis and motility of Helicobacter pylori in a viscous environment. J Gastroenterol 34:18–23 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28217-0
Loading
/content/journal/micro/10.1099/mic.0.28217-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error