1887

Abstract

Random transposon-mediated mutagenesis has been used to create truncations and insertions of green fluorescent protein (GFP), and Venus-yellow fluorescent protein (YFP), in FtsZ. Sixteen unique insertions were obtained, and one of them, in the poorly conserved C-terminal spacer, was functional for cell division with the Venus-YFP insert. The insertion of enhanced GFP (eGFP) at this same site was not functional; Venus-YFP was found to be superior to eGFP in other respects too. Testing the constructs for dominant negative effects led to the following general conclusion. The N-terminal domain, aa 1–195, is an independently folding domain that can poison Z-ring function when expressed without a functional C-terminal domain. The effects were weak, requiring expression of the mutant at 3–5 times the level of wild-type FtsZ. The C-terminal domain, aa 195–383, was also independently folding, but had no activity . The differential activity of the N- and C-terminal domains suggests that FtsZ protofilament assembly is directional, with subunits adding primarily at the bottom of the protofilament. Directional assembly could occur by either a treadmilling or a dynamic instability mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28219-0
2005-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4033.html?itemId=/content/journal/micro/10.1099/mic.0.28219-0&mimeType=html&fmt=ahah

References

  1. Anderson D. E., Gueiros-Filho F. J., Erickson H. P. 2004; Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781 [CrossRef]
    [Google Scholar]
  2. Chen Y., Erickson H. P. 2005; Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J Biol Chem 280:22549–22554 [CrossRef]
    [Google Scholar]
  3. Chen Y., Bjornson K., Redick S. D., Erickson H. P. 2005; A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys J 88:505–514 [CrossRef]
    [Google Scholar]
  4. Cordell S. C., Robinson E. J., Lowe J. 2003; Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci U S A 100:7889–7894 [CrossRef]
    [Google Scholar]
  5. Cormack B. P., Valdivia R. H., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP. Gene 173:33–38 [CrossRef]
    [Google Scholar]
  6. Dai K., Lutkenhaus J. 1991; ftsZ is an essential cell division gene in Escherichia coli . J Bacteriol 173:3500–3506
    [Google Scholar]
  7. Datta P., Dasgupta A., Bhakta S., Basu J. 2002; Interaction between FtsZ and FtsW of Mycobacterium tuberculosis . J Biol Chem 277:24983–24987 [CrossRef]
    [Google Scholar]
  8. Desai A., Mitchison T. J. 1997; Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117 [CrossRef]
    [Google Scholar]
  9. Din N., Quardokus E. M., Sackett M. J., Brun Y. V. 1998; Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol 27:1051–1063 [CrossRef]
    [Google Scholar]
  10. Erickson H. P. 1998; Atomic structures of tubulin and FtsZ. Trends Cell Biol 8:133–137 [CrossRef]
    [Google Scholar]
  11. Erickson H. P. 2001; The FtsZ protofilament and attachment of ZipA-structural constraints on the FtsZ power stroke. Curr Opin Cell Biol 13:55–60 [CrossRef]
    [Google Scholar]
  12. Erickson H. P., Taylor D. W., Taylor K. A., Bramhill D. 1996; Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93:519–523 [CrossRef]
    [Google Scholar]
  13. Garner E. C., Campbell C. S., Mullins R. D. 2004; Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306:1021–1025 [CrossRef]
    [Google Scholar]
  14. Harry E. J. 2001; Bacterial cell division: regulating Z-ring formation. Mol Microbiol 40:795–803 [CrossRef]
    [Google Scholar]
  15. Khlebnikov A., Datsenko K. A., Skaug T., Wanner B. L., Keasling J. D. 2001; Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147:3241–3247
    [Google Scholar]
  16. Leung A. K., Lucile White E., Ross L. J., Reynolds R. C., DeVito J. A., Borhani D. W. 2004; Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. J Mol Biol 342:953–970 [CrossRef]
    [Google Scholar]
  17. Levin P. A., Losick R. 1996; Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis . Genes Dev 10:478–488 [CrossRef]
    [Google Scholar]
  18. Ma X., Margolin W. 1999; Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181:7531–7544
    [Google Scholar]
  19. Ma X., Ehrhardt D. W., Margolin W. 1996; Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 93:12998–13003 [CrossRef]
    [Google Scholar]
  20. Margolin W. 2001; Spatial regulation of cytokinesis in bacteria. Curr Opin Microbiol 4:647–652 [CrossRef]
    [Google Scholar]
  21. Nagai T., Ibata K., Park E. S., Kubota M., Mikoshiba K., Miyawaki A. 2002; A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90 [CrossRef]
    [Google Scholar]
  22. Nogales E., Downing K. H., Amos L. A., Lowe J. 1998; Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5:451–458 [CrossRef]
    [Google Scholar]
  23. Oliva M. A., Cordell S. C., Lowe J. 2004; Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11:1243–1250 [CrossRef]
    [Google Scholar]
  24. Redick S. D., Stricker J., Briscoe G., Erickson H. P. 2005; Mutants of FtsZ targeting the protofilament interface: effects on cell division and GTPase activity. J Bacteriol 187:2727–2736 [CrossRef]
    [Google Scholar]
  25. Reznikoff W. S., Bhasin A., Davies D. R., Goryshin I. Y., Mahnke L. A., Naumann T., Rayment I., Steiniger-White M., Twining S. S. 1999; Tn 5 : a molecular window on transposition. Biochem Biophys Res Commun 266:729–734 [CrossRef]
    [Google Scholar]
  26. Romberg L., Simon M., Erickson H. P. 2001; Polymerization of FtsZ, a bacterial homolog of tubulin. Is assembly cooperative? J Biol Chem 276:11743–11753 [CrossRef]
    [Google Scholar]
  27. Sheridan D. L., Berlot C. H., Robert A., Inglis F. M., Jakobsdottir K. B., Howe J. R., Hughes T. E. 2002; A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction. BMC Neurosci 3:7 [CrossRef]
    [Google Scholar]
  28. Stricker J., Erickson H. P. 2003; In vivo characterization of Escherichia coli ftsZ mutants: effects on Z-ring structure and function. J Bacteriol 185:4796–4805 [CrossRef]
    [Google Scholar]
  29. Stricker J., Maddox P., Salmon E. D., Erickson H. P. 2002; Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci U S A 99:3171–3175 [CrossRef]
    [Google Scholar]
  30. Vaughan S., Wickstead B., Gull K., Addinall S. G. 2004; Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58:19–29 [CrossRef]
    [Google Scholar]
  31. Wang X. D., Huang J. A., Mukherjee A., Cao C., Lutkenhaus J. 1997; Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179:5551–5559
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28219-0
Loading
/content/journal/micro/10.1099/mic.0.28219-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error