1887

Abstract

The gene encoding an enantioselective arylacetonitrilase was identified on a 3·8 kb DNA fragment from the genomic DNA of EBC191. The gene was isolated, sequenced and cloned into the -rhamnose-inducible expression vector pJOE2775. The nitrilase was produced in large quantities and purified as a histidine-tagged enzyme from crude extracts of -rhamnose-induced cells of JM109. The purified nitrilase was significantly stabilized during storage by the addition of 1 M ammonium sulfate. The temperature optimum (50 °C), pH optimum (pH 6·5), and specific activity of the recombinant nitrilase were similar to those of the native enzyme from EBC191. The enzyme hydrolysed various phenylacetonitriles with different substituents in the 2-position and also heterocyclic and bicyclic arylacetonitriles to the corresponding carboxylic acids. The conversion of most arylacetonitriles was accompanied by the formation of different amounts of amides as by-products. The relative amounts of amides formed from different nitriles increased with an increasing negative inductive effect of the substituent in the 2-position. The acids and amides that were formed from chiral nitriles demonstrated in most cases opposite enantiomeric excesses. Thus mandelonitrile was converted by the nitrilase preferentially to -mandelic acid and -mandelic acid amide. The nitrilase gene is physically linked in the genome of with genes encoding the degradative pathway for mandelic acid. This might suggest a natural function of the nitrilase in the degradation of mandelonitrile or similar naturally occurring hydroxynitriles.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28246-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3639.html?itemId=/content/journal/micro/10.1099/mic.0.28246-0&mimeType=html&fmt=ahah

References

  1. Altenbuchner J., Vieill P., Pelletier I. 1992; Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216:457–466
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipmann D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Azakami H., Sugino H., Yokoro N., Iwata N., Murooka Y. 1993; moaR , a gene that encodes a positive regulator of the monoamine regulon in Klebsiella aerogenes . J Bacteriol 175:6287–6292
    [Google Scholar]
  4. Bandyopadhyay A. K., Nagasawa T., Asano Y., Fujishiro K., Yoshiki T., Yamada H. 1986; Purification and characterization of benzonitrilase from Arthrobacter sp. strain J-1. Appl Environ Microbiol 51:302–306
    [Google Scholar]
  5. Barker R. F., Idler K. B., Thompson D. V., Kemp J. D. 1983; Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2:335–350 [CrossRef]
    [Google Scholar]
  6. Bauer R., Hirrlinger B., Layh N., Stolz A., Knackmuss H.-J. 1994; Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other ( R , S )-2-arylacetonitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 42:1–7 [CrossRef]
    [Google Scholar]
  7. Bunch A. W. 1998; Nitriles. In Biotechnology , vol. 8a, Biotransformations I pp 277–324 Edited by Rehm H. J., Reed G. Weinheim: VCH Wiley;
    [Google Scholar]
  8. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli : transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175 [CrossRef]
    [Google Scholar]
  9. Collier L. S., Nichols N. N., Neidle E. L. 1997; BenK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179:5943–5946
    [Google Scholar]
  10. Dorn E., Hellwig M., Reineke W., Knackmuss H.-J. 1974; Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70 [CrossRef]
    [Google Scholar]
  11. Effenberger F., Osswald S. 2001; Enantioselective hydrolysis of ( RS )-2-fluoroarylacetonitriles using nitrilase from Arabidopsis thaliana . Tetrahedron: Asymmetry 12:279–285 [CrossRef]
    [Google Scholar]
  12. Gish W., States D. J. 1993; Identification of protein coding regions by database similarity search. Nat Genet 3:266–272 [CrossRef]
    [Google Scholar]
  13. Goldlust A., Bohak Z. 1989; Induction, purification, and characterization of the nitrilase of Fusarium oxysporum f.sp. melonis . Biotechnol Appl Biochem 11:581–601
    [Google Scholar]
  14. Harper D. B. 1976; Purification and properties of an unusual nitrilase from Nocardia NCIMB11216. Biochem Soc Trans 4:502–504
    [Google Scholar]
  15. Harper D. B. 1977; Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani . Biochem J 167:685–692
    [Google Scholar]
  16. Harper D. B. 1985; Characterization of a nitrilase from Nocardia sp. ( Rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17:677–683 [CrossRef]
    [Google Scholar]
  17. Harwood C. S., Nichols N. N., Kim M. K., Ditty J. L., Parales R. E. 1994; Identification of the pcaRKF gene cluster from Pseudomonas putida : involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176:6479–6488
    [Google Scholar]
  18. Hook R. H., Robinson W. G. 1964; Ricinine nitrilase: II. Purification and properties. J Biol Chem 239:4263–4267
    [Google Scholar]
  19. Kato Y., Nakamura K., Sakiyama H., Mayhew S. G., Asano Y. 2000; Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39:800–809 [CrossRef]
    [Google Scholar]
  20. Kieser T. 1984; Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli . Plasmid 12:19–36 [CrossRef]
    [Google Scholar]
  21. Kiziak C. 1998 Heterologe Produktion der Nitrilase aus Pseudomonas fluorescens EBC191 und chimärer Enzymvarianten in E. coli Diplomarbeit: Universität Stuttgart;
    [Google Scholar]
  22. Kobayashi M., Nagasawa T., Yamada H. 1989; Nitrilase from Rhodococcus rhodochrous J1. Purification and characterization. Eur J Biochem 182:349–356 [CrossRef]
    [Google Scholar]
  23. Kobayashi M., Yanaka N., Nagasawa T., Yamada H. 1990; Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 172:4807–4815
    [Google Scholar]
  24. Kobayashi M., Komeda H., Yanaka N., Nagasawa T., Yamada H. 1992; Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem 267:20746–20751
    [Google Scholar]
  25. Komeda H., Hori Y., Kobayashi M., Shimizu S. 1996; Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci U S A 93:10572–10577 [CrossRef]
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  27. Layh N., Stolz A., Förster S., Effenberger F., Knackmuss H.-J. 1992; Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases. Arch Microbiol 158:405–411
    [Google Scholar]
  28. Layh N., Stolz A., Böhme S., Effenberger F., Knackmuss H.-J. 1994; Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S -naproxen by new bacterial isolates. J Biotechnol 33:175–182 [CrossRef]
    [Google Scholar]
  29. Layh N., Hirrlinger B., Stolz A., Knackmuss H.-J. 1997; Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674 [CrossRef]
    [Google Scholar]
  30. Layh N., Parratt J., Willets A. 1998; Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B Enzym417–424
    [Google Scholar]
  31. Martinková L., Kren V. 2002; Nitrile- and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatal Biotrans 20:79–93
    [Google Scholar]
  32. Mauger J., Nagasawa T., Yamada H. 1990; Occurrence of a novel nitrilase, arylacetonitrilase, in Alcaligenes faecalis JM3. Arch Microbiol 155:1–6 [CrossRef]
    [Google Scholar]
  33. McGowan S., Sebaihia M., Jones S. 7 other authors 1995; Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550 [CrossRef]
    [Google Scholar]
  34. McLeish M. J., Kneen M. M., Gopalakrishna K. N., Koo C. W., Babbitt P. C., Gerlt J. A., Kenyon G. L. 2003; Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633. J Bacteriol 185:2451–2456 [CrossRef]
    [Google Scholar]
  35. Moser R. 1996 Charakterisierung, Reinigung und N-terminale Sequenzierung der Nitrilase aus P. fluorescens EBC191 Diplomarbeit Universität Stuttgart;
    [Google Scholar]
  36. Nagasawa T., Mauger J., Yamada H. 1990; A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. Eur J Biochem 194:765–772 [CrossRef]
    [Google Scholar]
  37. Nagasawa T., Wieser M., Nakamura T., Iwahara H., Yoshida T., Geck K. 2000; Nitrilase of Rhodococcus rhodochrous J1: conversion into the active form by subunit association. Eur J Biochem 267:138–144 [CrossRef]
    [Google Scholar]
  38. Nicholas K. B., Nicholas H. B. Jr 1996; genedoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author per anonymous ftp
    [Google Scholar]
  39. Ochman H., Ayala F. J., Hartl D. L. 1993; Use of polymerase chain reaction to amplify segments outside boundaries of known sequences. Methods Enzymol 218:309–321
    [Google Scholar]
  40. Osswald S., Wajant H., Effenberger F. 2002; Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana . Eur J Biochem 269:680–687 [CrossRef]
    [Google Scholar]
  41. Pabo C. O., Sauer R. T. 1984; Protein-DNA recognition. Annu Rev Biochem 53:293–321 [CrossRef]
    [Google Scholar]
  42. Piotrowski M., Schönfelder S., Weiler E. W. 2001; The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β -cyano-l-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621 [CrossRef]
    [Google Scholar]
  43. Robinson W. G., Hook R. H. 1964; Ricinine nitrilase: I. Reaction product and substrate specificity. J Biol Chem 239:4257–4262
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Schulze B. 2002; Hydrolysis and formation of C-N bonds. In Enzyme Catalysis in Organic Synthesis vol. II pp 699–715 Edited by Drauz K., Waldmann H. Weinheim: VCH Wiley;
    [Google Scholar]
  46. Stevenson D. E., Feng R., Dumas F., Groleau D., Mihoc A., Storer A. C. 1992; Mechanistic and structural studies on Rhodococcus ATCC39484. Biotechnol Appl Biochem 15:283–302
    [Google Scholar]
  47. Thomson J. D., Higgins D. G., Gibson T. J. 1994; clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  48. Tsou A. Y., Ransom S. C., Gerlt J. A., Buechter D. D., Babbitt P. C., Kenyon G. L. 1990; Mandelate pathway of Pseudomonas putida : sequence relationships involving mandelate racemase, ( S )-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli . Biochemistry 29:9856–9862 [CrossRef]
    [Google Scholar]
  49. Vieira J., Messing J. 1982; The pUC plasmids and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  50. Volff J.-N., Eichenseer C., Viell P., Piendl W., Altenbuchner J. 1996; Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol 21:1037–1047 [CrossRef]
    [Google Scholar]
  51. Yamamoto K., Ueno Y., Otsubo K., Kawakami K., Komatsu K.-I. 1990; Production of S -(+)-ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226. Appl Environ Microbiol 56:3125–3129
    [Google Scholar]
  52. Yamamoto K., Fujimatsu I., Komatsu K.-I. 1992; Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28246-0
Loading
/content/journal/micro/10.1099/mic.0.28246-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error