1887

Abstract

Phylogenetic screening of 3200 clones from a metagenomic library of Antarctic mesopelagic picoplankton allowed the identification of two bacterial 16S-rDNA-containing clones belonging to the , DeepAnt-1F12 and DeepAnt-32C6. These clones were very divergent, forming a monophyletic cluster with the environmental sequence GR-WP33-58 that branched at the base of the myxobacteria. Except for the possession of complete operons without associated tRNA genes, DeepAnt-1F12 and DeepAnt-32C6 were very different in gene content and organization. Gene density was much higher in DeepAnt-32C6, whereas nearly one-third of DeepAnt-1F12 corresponded to intergenic regions. Many of the predicted genes encoded by these metagenomic clones were informational (i.e. involved in replication, transcription, translation and related processes). Despite this, a few putative cases of horizontal gene transfer were detected, including a transposase. DeepAnt-1F12 contained one putative gene encoding a long cysteine-rich protein, probably membrane-bound and Ca-binding, with only eukaryotic homologues. DeepAnt-32C6 carried some predicted genes involved in metabolic pathways that suggested this organism may be anaerobic and able to ferment and to degrade complex compounds extracellularly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28254-0
2006-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/505.html?itemId=/content/journal/micro/10.1099/mic.0.28254-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Madden T. L, Schaffer A. A, Zhang J, Zhang Z, Miller W, Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Beckingham K, Lu A. Q, Andruss B. F. 1998; Calcium-binding proteins and development. Biometals 11:359–373 [CrossRef]
    [Google Scholar]
  3. Beja O, Aravind L, Koonin E. V. 9 other authors 2000a; Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906 [CrossRef]
    [Google Scholar]
  4. Beja O, Suzuki M. T, Koonin E. V. 9 other authors 2000b; Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2:516–529 [CrossRef]
    [Google Scholar]
  5. Beja O, Spudich E. N, Spudich J. L, Leclerc M, DeLong E. F. 2001; Proteorhodopsin phototrophy in the ocean. Nature 411:786–789 [CrossRef]
    [Google Scholar]
  6. Benson G. 1999; Tandem Repeats Finder: a program to analyse DNA sequences. Nucleic Acids Res 27:573–578 [CrossRef]
    [Google Scholar]
  7. Dawid W. 2000; Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427 [CrossRef]
    [Google Scholar]
  8. De La Torre J. R, Christianson L. M, Beja O, Suzuki M. T, Karl D. M, Heidelberg J, DeLong E. F. 2003; Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci U S A 100:12830–12835 [CrossRef]
    [Google Scholar]
  9. del Giorgio P. A., Duarte C. M. 2002; Respiration in the open ocean. Nature 420:379–384 [CrossRef]
    [Google Scholar]
  10. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  11. DeLong E. F. 2001; Microbial seascapes revisited. Curr Opin Microbiol 4:290–295 [CrossRef]
    [Google Scholar]
  12. Dworkin M. 1996; Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60:70–102
    [Google Scholar]
  13. Fuhrman J. A, Davis A. A. 1997; Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285 [CrossRef]
    [Google Scholar]
  14. Fuhrman J. A, McCallum K, Davis A. A. 1992; Novel major archaebacterial group from marine plankton. Nature 356:148–149 [CrossRef]
    [Google Scholar]
  15. Geer L. Y, Domrachev M, Lipman D. J, Bryant S. H. 2002; cdart: protein homology by domain architecture. Genome Res 12:1619–1623 [CrossRef]
    [Google Scholar]
  16. Giovannoni S. J, Britschgi T. B, Moyer C. L, Field K. G. 1990; Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63 [CrossRef]
    [Google Scholar]
  17. Giovannoni S. J, Rappe M. S, Vergin K. L, Adair N. L. 1996; 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. Proc Natl Acad Sci U S A 93:7979–7984 [CrossRef]
    [Google Scholar]
  18. Gordon D. A, Giovannoni S. J. 1996; Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol 62:1171–1177
    [Google Scholar]
  19. Hallam S. J, Putnam N, Preston C. M, Detter J. C, Rokhsar D, Richardson P. M, DeLong E. F. 2004; Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462 [CrossRef]
    [Google Scholar]
  20. He Q, Sanford R. A. 2003; Characterization of Fe(III) reduction by chlororespiring Anaeromyxobacter dehalogenans . Appl Environ Microbiol 69:2712–2718 [CrossRef]
    [Google Scholar]
  21. Heidelberg J. F, Seshadri R, Haveman S. A. 32 other authors 2004; The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559 [CrossRef]
    [Google Scholar]
  22. Hofmann K, Stoffel W. 1993; TMbase – a database of membrane-spanning protein segments. Biol Chem 347:166
    [Google Scholar]
  23. Hou S, Saw J. H, Lee K. S. 19 other authors 2004; Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci U S A 101:18036–18041 [CrossRef]
    [Google Scholar]
  24. Inagaki F, Sakihama Y, Inoue A, Kato C, Horikoshi K. 2002; Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 4:277–286 [CrossRef]
    [Google Scholar]
  25. Jeanthon C. 2000; Molecular ecology of hydrothermal vent microbial communities. Antonie Van Leeuwenhoek 77:117–133 [CrossRef]
    [Google Scholar]
  26. Jobb G, Strimmer K, von Haeseler A. 2004; treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18 [CrossRef]
    [Google Scholar]
  27. Karner M. B, DeLong E. F, Karl D. M. 2001; Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510 [CrossRef]
    [Google Scholar]
  28. Kickhoefer V. A, Poderycki M. J, Chan E. K, Rome L. H. 2002; The La RNA-binding protein interacts with the vault RNA and is a vault-associated protein. J Biol Chem 277:41282–41286 [CrossRef]
    [Google Scholar]
  29. Koonin E. V. 2003; Horizontal gene transfer: the path to maturity. Mol Microbiol 50:725–727 [CrossRef]
    [Google Scholar]
  30. Kostichka K, Thomas S. M, Gibson K. J, Nagarajan V, Cheng Q. 2001; Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. J Bacteriol 183:6478–6486 [CrossRef]
    [Google Scholar]
  31. López-García P, López-López A, Moreira D, Rodríguez-Valera F. 2001a; Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 36:193–202 [CrossRef]
    [Google Scholar]
  32. López-García P, Moreira D, López-López A, Rodríguez-Valera F. 2001b; A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ Microbiol 3:72–78 [CrossRef]
    [Google Scholar]
  33. López-García P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D. 2003; Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976 [CrossRef]
    [Google Scholar]
  34. López-García P, Brochier C, Moreira D, Rodríguez-Valera F. 2004; Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol 6:19–34
    [Google Scholar]
  35. Lovley D. R, Phillips E. J, Lonergan D. J, Widman P. K. 1995; Fe(III) and S0 reduction by Pelobacter carbinolicus . Appl Environ Microbiol 61:2132–2138
    [Google Scholar]
  36. Lovley D. R, Holmes D. E, Nevin K. P. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286
    [Google Scholar]
  37. Lowe T. M, Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 [CrossRef]
    [Google Scholar]
  38. Madrid V. M, Taylor G. T, Scranton M. I, Chistoserdov A. Y. 2001; Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67:1663–1674 [CrossRef]
    [Google Scholar]
  39. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L. 2001; Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554 [CrossRef]
    [Google Scholar]
  40. Methe B. A, Nelson K. E, Eisen J. A. 31 other authors 2003; Genome of Geobacter sulfurreducens : metal reduction in subsurface environments. Science 302:1967–1969 [CrossRef]
    [Google Scholar]
  41. Mills H. J, Martinez R. J, Story S, Sobecky P. A. 2004; Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458 [CrossRef]
    [Google Scholar]
  42. Moreira D, Rodriguez-Valera F, Lopez-Garcia P. 2004; Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ Microbiol 6:959–969 [CrossRef]
    [Google Scholar]
  43. Morris R. M, Rappe M. S, Connon S. A, Vergin K. L, Siebold W. A, Carlson C. A, Giovannoni S. J. 2002; SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810 [CrossRef]
    [Google Scholar]
  44. Osborn A. M, Boltner D. 2002; When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48:202–212 [CrossRef]
    [Google Scholar]
  45. Pace N. R. 1997; A molecular view of microbial diversity and the biosphere. Science 276:734–740 [CrossRef]
    [Google Scholar]
  46. Petrie L, North N. N, Dollhopf S. L, Balkwill D. L, Kostka J. E. 2003; Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl Environ Microbiol 69:7467–7479 [CrossRef]
    [Google Scholar]
  47. Philippe H. 1993; must, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 21:5264–5272 [CrossRef]
    [Google Scholar]
  48. Rabus R, Ruepp A, Frickey T. 15 other authors 2004; The genome of Desulfotalea psychrophila , a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902 [CrossRef]
    [Google Scholar]
  49. Rappé M. S., Giovannoni S. J. 2003; The uncultured microbial majority. Annu Rev Microbiol 57:369–394 [CrossRef]
    [Google Scholar]
  50. Reichenbach H. 1999; The ecology of the myxobacteria. Environ Microbiol 1:15–21 [CrossRef]
    [Google Scholar]
  51. Rendulic S, Jagtap P, Rosinus A. 10 other authors 2004; A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692 [CrossRef]
    [Google Scholar]
  52. Reysenbach A. L, Cady S. L. 2001; Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9:79–86 [CrossRef]
    [Google Scholar]
  53. Ronquist F, Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef]
    [Google Scholar]
  54. Sanford R. A, Cole J. R, Tiedje J. M. 2002; Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900 [CrossRef]
    [Google Scholar]
  55. Segerer A. H, Stetter K. O. 1999; The order Sulfolobales. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community Edited by Dworkin M. New York: Springer; http://141.150.157.117:8080/prokPUB/chaprender/jsp/showchap.jsp?chapnum=29
    [Google Scholar]
  56. Selenska-Pobell S. 2002; Diversity and activity of bacteria in uranium mining waste piles. In Interactions of Microorganisms with Radionuclides pp  225–254 Edited by Keith-Roach M. J., Lievens F. R. Amsterdam: Elsevier;
    [Google Scholar]
  57. Syu M. J. 2001; Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18 [CrossRef]
    [Google Scholar]
  58. Tatusov R. L, Koonin E. V, Lipman D. J. 1997; A genomic perspective on protein families. Science 278:631–637 [CrossRef]
    [Google Scholar]
  59. Tatusov R. L, Galperin M. Y, Natale D. A, Koonin E. V. 2000; The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36 [CrossRef]
    [Google Scholar]
  60. Thompson J. D, Higgins D. G, Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  61. Tomley F. M, Billington K. J, Bumstead J. M, Clark J. D, Monaghan P. 2001; EtMIC4: a microneme protein from Eimeria tenella that contains tandem arrays of epidermal growth factor-like repeats and thrombospondin type-I repeats. Int J Parasitol 31:1303–1310 [CrossRef]
    [Google Scholar]
  62. Tyson G. W, Chapman J, Hugenholtz P. 7 other authors 2004; Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43 [CrossRef]
    [Google Scholar]
  63. Venter J. C, Remington K, Heidelberg J. F. 20 other authors 2004; Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74 [CrossRef]
    [Google Scholar]
  64. Witcombe D. M, Belli S. I, Wallach M. G, Smith N. C. 2003; Molecular characterisation of EmTFP250: a novel member of the TRAP protein family in Eimeria maxima . Int J Parasitol 33:691–702 [CrossRef]
    [Google Scholar]
  65. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  66. Wright T. D, Vergin K. L, Boyd P. W, Giovannoni S. J. 1997; A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer. Appl Environ Microbiol 63:1441–1448
    [Google Scholar]
  67. Zaballos M, Ovreas L, D'Auria G, Legault B, Alba J. C, Pushker R, Daaeand F. L, López-López A, Galán Bartual S, Rodríguez-Valera F. 2006; Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. FEMS Microb Ecol (in press)
    [Google Scholar]
  68. Zhulin I. B, Taylor B. L, Dixon R. 1997; PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22:331–333 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28254-0
Loading
/content/journal/micro/10.1099/mic.0.28254-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error