1887

Abstract

Latency and reactivation are a significant problem that contributes to the incidence, transmission and pathogenesis of tuberculosis. The mechanisms involved in these processes, at the level of both the bacillus and the host, are poorly understood. In the -crystallin () gene has been linked to latency, because it is highly expressed during hypoxic growth conditions. Deletion of the gene in H37Rv (Δ strain) was previously shown to reduce the intracellular growth of bacilli in macrophages; however, its impact on pathogenesis was unknown. This study demonstrated that infection of C57BL6 mice with Δ results in lung bacillary loads 1-2 log units higher in comparison to parental H37Rv. Haematoxylin/eosin staining of lungs revealed exacerbated pathology characterized by extensive obliteration of alveolar air spaces by granulomatous inflammation. RT-PCR analysis and immunostaining of lungs showed that infection with either H37Rv or Δ results in the differential expression of lysosomal cathepsin proteases. A slight increase in the expression of the matrix-degrading acidic-type cathepsins B, D and H was noted in Δ-infected mice and was associated with clusters of macrophages within lung granulomas. Δ-infected mice also showed high serum levels of TNF-, IFN- and G-CSF, suggesting that Acr may play a role in modulating the host response to infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28275-0
2006-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/233.html?itemId=/content/journal/micro/10.1099/mic.0.28275-0&mimeType=html&fmt=ahah

References

  1. Adler J. J, Rose D. N. 1996; Transmission and pathogenesis of tuberculosis. In Tuberculosis pp.  129–140 Edited by Rom W. N., Gray S. M. Boston, MA: Little, Brown;
    [Google Scholar]
  2. Aloisi F, Care A, Borsellino G. 7 other authors 1992; Production of hemo-lymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol 149:2358–2366
    [Google Scholar]
  3. Bainton D. F, Ullyot J. L, Farquhar M. G. 1971; The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134:907–934 [CrossRef]
    [Google Scholar]
  4. Basu S, Dunn A, Ward A. 2002; G-CSF: function and modes of action. Int J Mol Med 10:3–10
    [Google Scholar]
  5. Bean A. G, Roach D. R, Briscoe H, France M. P, Korner H, Sedgwick J. D, Britton W. J. 1999; Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162:3504–3511
    [Google Scholar]
  6. Bekker L. G, Moreira A. L, Bergtold A, Freeman S, Ryffel B, Kaplan G. 2000; Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68:6954–6961 [CrossRef]
    [Google Scholar]
  7. Bloom B. R, Murray C. J. L. 1992; Commentary on a reemergent killer. Science 257:1055–1064 [CrossRef]
    [Google Scholar]
  8. Chan J, Xing Y, Magliozzo R. S, Bloom B. R. 1992; Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175:1111–1122 [CrossRef]
    [Google Scholar]
  9. Cheers C, Haigh A. M, Kelso A, Metcalf D, Stanley E. R, Young A. M. 1988; Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect Immun 56:247–251
    [Google Scholar]
  10. Converse P. J, Sugisaki K, Abe Y, Schofield B. H, Pitt L. M, Dannenberg A. M., Jr, Estep J. E. 1996; Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect Immun 64:4776–4787
    [Google Scholar]
  11. Cooper A. M, Dalton D. K, Stewart T. A, Griffin J. P, Russell D. G, Orme I. M. 1993; Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247 [CrossRef]
    [Google Scholar]
  12. Copenhaver R. H, Sepulveda E, Armitige L. Y, Actor J. K, Wagner A, Norris S. J, Hunter R. L, Jagannath C. 2004; A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential. Infect Immun 72:7084–7095 [CrossRef]
    [Google Scholar]
  13. Cunningham A. F, Spreadbury C. L. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J Bacteriol 180:801–808
    [Google Scholar]
  14. Dalton D. K, Pitts-Meek S, Keshav S, Figari I. S, Bradley A, Stewart T. A. 1993; Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259:1739–1742 [CrossRef]
    [Google Scholar]
  15. Dannenberg A. M. Jr 1993; Immunopathogenesis of pulmonary tuberculosis. Hosp Pract (Off Ed) 28:51–58
    [Google Scholar]
  16. Dannenberg A. M, Rook G. A. W. 1994; Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses – dual mechanisms that control bacillary multiplication. In Tuberculosis: Pathogenesis, Protection and Control pp  459–483 Edited by Blood R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Demetri G. D, Griffin J. D. 1991; Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808
    [Google Scholar]
  18. Dye C, Scheele S, Dolin P, Pathania V, Raviglione M. C. 1999; Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686 [CrossRef]
    [Google Scholar]
  19. Fibbe W. E, Billiau A, Goselink H. M, Voogt P. J, van Eeden G, Ralph P, Altrock B. W, Falkenburg J. H, van Damme J. 1988; Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor. Blood 71:430–435
    [Google Scholar]
  20. Flynn J. L, Chan J. 2001; Tuberculosis: latency and reactivation. Infect Immun 69:4195–4201 [CrossRef]
    [Google Scholar]
  21. Flynn J. L, Chan J, Triebold K. J, Dalton D. K, Stewart T. A, Bloom B. R. 1993; An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254 [CrossRef]
    [Google Scholar]
  22. Flynn J. L, Goldstein M. M, Chan J, Triebold K. J, Pfeffer K, Lowenstein C. J, Schreiber R, Mak T. W, Bloom B. R. 1995; Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572 [CrossRef]
    [Google Scholar]
  23. Groenen P. J, Merck K. B, Bloemendal H, de Jong W. W. 1994; Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem 225:1–19 [CrossRef]
    [Google Scholar]
  24. Hanson R. D, Connolly N. L, Burnett D, Campbell E. J, Senior R. M, Ley T. J. 1990; Developmental regulation of the human cathepsin G gene in myelomonocytic cells. J Biol Chem 265:1524–1530
    [Google Scholar]
  25. Horwitz J. 1992; Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–10453 [CrossRef]
    [Google Scholar]
  26. Imboden P, Schoolnik G. K. 1998; Construction and characterization of a partial Mycobacterium tuberculosis cDNA library of genes expressed at reduced oxygen tension. Gene 213:107–117 [CrossRef]
    [Google Scholar]
  27. Kaushansky K, Lin N, Adamson J. W. 1988; Interleukin-1 stimulates fibroblasts to synthesize granulocyte-macrophage and granulocyte colony-stimulating factors. Mechanism for the hematopoietic response to inflammation. J Clin Invest 81:92–97 [CrossRef]
    [Google Scholar]
  28. Kindler V, Sappino A. P, Grau G. E, Piguet P. F, Vassalli P. 1989; The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731–40 [CrossRef]
    [Google Scholar]
  29. Lee B. Y, Hefta S. A, Brennan P. J. 1992; Characterization of the major membrane protein of virulent Mycobacterium tuberculosis . Infect Immun 60:2066–2074
    [Google Scholar]
  30. Ley T. J, Connolly N. L, Katamine S, Cheah M. S, Senior R. M, Robbins K. C. 1989; Tissue-specific expression and developmental regulation of the human fgr proto-oncogene. Mol Cell Biol 9:92–99
    [Google Scholar]
  31. Nicola N. A. 1989; Haematopoietic cell growth factors and their receptors. Annu Rev Biochem 58:45–77 [CrossRef]
    [Google Scholar]
  32. Nicola N. A, Metcalf D, Matsumoto M, Johnson G. R. 1983; Purification of a factor inducing differentiation in murine myelo- monocytic leukemia cells. Identification as granulocyte colony- stimulating factor. J Biol Chem 258:9017–9023
    [Google Scholar]
  33. Opie E. L, Aronson J. D. 1927; Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch Pathol Lab Med 4:1
    [Google Scholar]
  34. Rivera-Marrero C. A, Schuyler W, Roman J. 2000; Induction of MMP-9 mediated gelatinolytic activity in human monocytic cells by cell wall components of M. tuberculosis . Microb Pathog 29:231–244 [CrossRef]
    [Google Scholar]
  35. Rivera-Marrero C. A, Schuyler W, Roser S, Ritzenthaler J, Roman J. 2002; Mycobacterium tuberculosis induction of matrix metalloproteinase-9: the role of mannose and receptor-mediated mechanisms. Am J Physiol 282:546–555
    [Google Scholar]
  36. Rivera-Marrero C. A, Stewart J. N, Shafer W. M, Roman J. 2004; The down-regulation of cathepsin G in THP-1 monocytes after infection with M. tuberculosis is associated with increased intracellular survival of bacilli. Infect Immun 72:5712–5721 [CrossRef]
    [Google Scholar]
  37. Roach D. R, Bean A. G, Demangel C, France M. P, Briscoe H, Britton W. J. 2002; TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168:4620–4627 [CrossRef]
    [Google Scholar]
  38. Robertson H. E. 1933; Persistence of tuberculous infection. Am J Pathol 9:711
    [Google Scholar]
  39. Sallerfors B. 1994; Endogenous production and peripheral blood levels of granulocyte-macrophage (GM-) and granulocyte (G-) colony-stimulating factors. Leuk Lymphoma 13:235–247 [CrossRef]
    [Google Scholar]
  40. Schacker T. W, Nguyen P. L, Beilman G. J, Wolinsky S, Larson M, Reilly C, Haase A. T. 2002; Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J Clin Invest 110:1133–1139 [CrossRef]
    [Google Scholar]
  41. Schnappinger D, Ehrt S, Voskuil M. I. 8 other authors 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 [CrossRef]
    [Google Scholar]
  42. Selwyn P. A, Hartel D, Lewis V. A, Schoenbaum E. E, Vermund S. H, Klein R. S, Walker A. T, Freidland G. H. 1989; A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 320:545–550 [CrossRef]
    [Google Scholar]
  43. Senior R. M, Campbell E. J. 1984; Cathepsin G in human mononuclear phagocytes: comparisons between monocytes and U937 monocyte-like cells. J Immunol 132:2547–2551
    [Google Scholar]
  44. Senior R. M, Campbell E. J, Landis J. A, Cox F. R, Kuhn C, Koren H. S. 1982; Elastase of U-937 monocyte like cells. Comparisons with elastases derived form human monocytes and neutrophils and murine macrophagelike cells. J Clin Invest 69:384–393 [CrossRef]
    [Google Scholar]
  45. Sherman D. R, Voskuil M, Schnappinger D, Liao R, Harrell M. I, Schoolnik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α -crystallin. Proc Natl Acad Sci U S A 98:7534–7539 [CrossRef]
    [Google Scholar]
  46. Shi L, Jung Y.-J, Tyagi S, Gennaro M. L, North R. J. 2003; Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci U S A 100:241–246 [CrossRef]
    [Google Scholar]
  47. Smith S, Tan S, Jeromsky E, Liao R, Yuan Y, Wilson C. B, Sherman D. S. 2000; Enhanced in vivo growth of α -crystallin deficient M. tuberculosis. In TB 2000Past, Present, and Future , ASM Conference on Tuberculosis New York. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Timm J, Post F. A, Bekker L.-G. 9 other authors 2003; Differential expression of iron-, carbon-, oxygen-responsive mycobacterial genes in lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A 100:14321–14326 [CrossRef]
    [Google Scholar]
  49. van der Meer J. W, van de Gevel J. S, Beelen R. H, Fluitsma D, Hoefsmit E. C, van Furth R. 1981; Culture of human bone marrow in the Teflon culture bag: identification of the human monoblast. J Reticuloendothel Soc 32:355–369
    [Google Scholar]
  50. Verbon A, Hartskeerl R. A, Schuitema A, Kolk A. H, Young D. B, Lathigra R. 1992; The 14,000-molecular-weight antigen of Mycobacterium tuberculosis is related to the alpha-crystallin family of low-molecular-weight heat shock proteins. J Bacteriol 174:1352–1359
    [Google Scholar]
  51. Wang Z, Zheng T, Zhu Z, Homer R. J, Riese R. J, Chapman H. A Jr, Shapiro S. D, Elias J. A. 2000; Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 192:1587–1600 [CrossRef]
    [Google Scholar]
  52. Wayne L. G, Diaz G. A. 1967; Autolysis and secondary growth of Mycobacterium tuberculosis in submerged culture. J Bacteriol 93:1374–1381
    [Google Scholar]
  53. Wayne L. G, Hayes L. G. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069
    [Google Scholar]
  54. Welgus H. G, Connolly N. L, Senior R. M. 1986; 12- O -Tetradecanoyl-phorbol-13-acetate-differentiated U937 cells express a macrophage-like profile of neutral proteinases. High levels of secreted collagenase and collagenase inhibitor accompany low levels of intracellular elastase and cathepsin G. J Clin Invest 77:1675–1681 [CrossRef]
    [Google Scholar]
  55. Wolters P. J, Chapman H. A. 2000; Importance of lysosomal cysteine proteases in lung disease. Respir Res 1:170–177 [CrossRef]
    [Google Scholar]
  56. Yuan Y, Crane D. D, Barry C. E., III. 1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis : function of the mycobacterial alpha-crystallin homolog. J Bacteriol 178:4484–4492
    [Google Scholar]
  57. Yuan Y, Crane D. D, Simpson R. M, Zhu Y. Q, Hickey M. J, Sherman D. R, Barry C. E., III. 1998; The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A 95:9578–9583 [CrossRef]
    [Google Scholar]
  58. Zsebo K. M, Yuschenkoff V. N, Schiffer S, Chang D, McCall E, Dinarello C. A, Brown M. A, Altrock B, Bagby G. C. 1988; Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71:99–103
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28275-0
Loading
/content/journal/micro/10.1099/mic.0.28275-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error